Ongoing stellar and exoplanetary projects

M. Vaňko T. Pribulla, A. Maliuk

Institute seminar AI SAS, May 15, 2024

Outline

- * CMa OB1 Member: FM Canis Majoris
- * ζ Pegasi: slowly pulsating B star
- * Spectroscopic follow-up of the TESS planetary candidates

- CMa constellation stellar associations: (i) CMa OB1/R1 (d ~ 1.15 kpc), (ii) CMa OB2 (d ~ 740 pc). The predicted ages are 3 Myr and 100 Myr for CMa OB1/R1 and OB2, respectively (Tunç & Bakış, 2019).
- * Study of Eclipsing Binaries and Multiple Systems in OB Associations: CMa OB1 Member FM Canis Majoris

FM CMa: photometry

- ***** FM CMa (V = 8.73): a hot eclipsing binary composed of a B2 primary and a cooler secondary orbiting in P = 2.78945 days
- ★ Gaia DR3 spectroscopy: T_{eff} = 17368 [17219, 17640] K, log (g) = 3.618 [3.589, 3.670], [M/H] = 0.646 [0.537, 0.706], d = 862 [812, 901] pc.
- The *TESS* photometry: (i) total eclipses, (ii) low-amplitude variability in the out-of-eclipse parts of the light curve, (iii) caused by radial pulsations (componets rotates synchronously) or spots (asynchronous rotation)
 P ≈ 5.5 cycles/day (4.3 hours).
- * A comparison of the data from the two sectors (almost two years apart). Apsidal motion cycle about U = 92 years long. (*the secular precession of the major axis of the binary orbit*)

FM CMa: photometry

2214

FM CMa: photometry

Ground-based *BVRI* photometry obtained at the Kolonica Saddle Observatory in 2022

Phase-folded light curve of FM CMa obtained by HAT-Pi (Hungarian Automated Telescope) instrument (Bakos et al. 2004)

FM CMa with HAT-PI

https://wbhatti.org/research/hatpi.html

- **HAT-PI** uses 64 CCDs, each with a 13 x 13 degree field, to observe the sky above 30 degrees.
- * It has no declination axis, only tracks in Right Ascension.
- High cadence (every 30 seconds) photometry, resolution (23 arcseconds per pixel), and high photometric precision (1 mmag, at 30 second cadence)
- * Saturation limit $V \sim 8$ mag
- * Standard Cousins *I* filter as primary band, complemented by a Johnson *V* filter

FM CMa: spectroscopy

✤ Four sources of spectroscopic observations

(i) November 2009:

Coudé-Échelle Spectrograph (CES) attached to the 1.5-m RTT150 telescope, TÜBİTAK National Observatory (TUG), Antalya, Turkey

(ii) August/September 2017:

FEROS spectrograph at 2.2-m MPG/ESO telescope at La Silla, Chile

(iii) October/December 2022:

SMARTS CHIRON spectrograph at 1.5-m telescope, The Cerro Tololo Inter-American Observatory, (CTIO), Chile

(iv) 2017/2023:

MUSICOS spectrograph at 1.3-m telescope, Skalnaté Pleso Observatory, Slovakia

FM CMa: spectroscopy

- * The spectra confirm the early B spectral type manifested by the dominant hydrogen Balmer and neutral helium lines. Only the strongest metallic lines are visible (e.g., Mg II 4481, C II 4267, and the silicon triplet).
- * The lack of metallic lines complicates the determination of the radial velocity and spectra disentangling.

FM CMa: spectroscopy

 $H\alpha$ line

He 5875 Å line

Mg 4481 Å line

- * The variable asymmetric shapes of the absorption lines: complex and non-uniform wind flows from the two components in the orbital plane.
- A similar system (P = 1.8 days) with two massive B-type components AH Cep was detected in X-rays by Chandra observatory (Ignace et al., 2017). Its X-ray luminosity can originate from the wind collision between the two stars, supporting the complexity of the circum-stellar matter distribution in such systems.

FM CMa: preliminary solution

Parameter	Value	σ
P[d]	2.78928	0.00012
T_0 BJD [TDB]	2459202.9041	0.0034
i [m deg]	86.7	0.6
$r_{ m pri}$	0.2640	0.0025
$r_{ m sec}/r_{ m pri}$	0.596	0.009
e	0.067	0.005
$\omega [{ m deg}]$	274.4	0.4
l_3	0.95	0.15
$T_{\rm pri}$ [K]	17368	—
$T_{\rm sec} [{\rm K}]$	14700	450

 $K_1 = 129.4(2.1)$ km/s $K_2 = 228.3(3.0)$ km/s $V_{\gamma} = 40.9(1.4)$ km/s q = 0.57(2)

M. Vaňko, T. Pribulla, N. Shagatova, R. Komžík, P. Dubovský: 2024, In Conference Proceeding, CAOSP **54**, no. 2, p. 171-174.

FM CMa: future work

- Disentangling spectra of the system: CHIRON and MUSICOS
- Radial velocities determination, analysis RV curve from all spectroscopic datasets, possible additional component characterisation
- * Interpretation of variability in the out-of-eclipse parts in the LC
- Evolutionary status of the system, position in the HR diagram, population type, kinematical analysis, membership in CMa OB1/R1 association

In Cooperation with: J. Janík¹, V. Bakış², I. Bulut³, S. Bilir⁴, O. Demircan³, G. Handler⁵, E. Paunzen¹, M. Zejda¹, Z. Mikulášek¹, S.N. de Villiers⁶

¹ Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, The Czech Republic

² Department of Space Sciences and Technologies, Faculty of Science, Akdeniz University, Turkey

³ Department of Space Sciences and Technologies, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Turkey

⁴ Department of Astronomy and Space Sciences, Faculty of Science, Istanbul University, Turkey

⁵ Nicolaus Copernicus Astronomical Center, Warszawa, Poland

⁶ Private Observatory, 61 Dick Burton Road, Plumstead, Cape Town, South Africa

ζ Pegasi

Belongs to the group of slowly pulsating B stars (SPB stars):

- objects consisting of mid to late B-type stars that show photometric variability on the order of a few days.
- The pulsations show multi-periodic, non-radial gravity modes with periods in the range of 0.4-5 days and V-band amplitudes lower than 0.03 mag (e.g. Pedersen 2022; Aerts & Mathis 2023).

- Broadband photometry of ζ Peg, obtained by guide star telescope of Gravity Probe B (GP-B) mission.
 - Goebel (2007) found that the star is an SPB variable with a period of 22.952 \pm 0.804 hours (1.04566 cycles day⁻¹), and an GP–B amplitude of 488 μm .
 - This period was identified as a *g*-mode oscillation.
- T_{eff} are in the range of 11060-12000 K, and values of log (*g*) are between 3.25 and 4.0

(e.g. Mégessier 1971; Castelli 1991; Leone et al. 1997; Malagnini & Morossi 1997; Fitzpatrick & Massa 2005; Huang & Gies 2008; Wu et al. 2011; Zverko et al. 2016; Takeda et al. 2017)

Fast rotating star with *v* sin $i \approx 130$ km s⁻¹.

ζ Pegasi: photometry

ζ Pegasi: spectroscopy

Spectroscopic observations: Stará Lesná (eShel), Skalnaté Pleso (MUSICOS), 2016-2023, (67)
 La Silla (FEROS), 2003-2018, (163), La Silla (HARPS), 2004-2023, (60)

ζ Pegasi: Asteroseismology

- * The main goal: Asteroseismology of studied target, providing invaluable insights into a star's internal structure, composition, and overall evolution.
- Key information about a star's <u>mass</u>, <u>age</u>, and <u>chemical composition</u> by analysing the frequency, amplitude, and duration of pulsations.
- ★ FAMIAS (Frequency Analysis and Mode Identification for Asteroseismology): analysis of photometric and spectroscopic time-series data (e.g. Zima 2008, Wright et al. 2011, Schmid et al. 2014).
 - (i) *Spectroscopic Mode Identification*: the <u>degree *l*</u>, the <u>azimuthal order *m*</u>, and the <u>velocity amplitude of the pulsation modes</u> as well as parameters such as <u>v sin i</u> and the <u>inclination angle</u>.
 - (ii) *Photometric Mode Identification:* <u>Teff</u> and <u>log(g)</u> for different *l*-values inside a given range.

Param.	Allende et al. (1999)	Zorec et al. (2009)	Gordon et al. (2019)	This work
$T_{\rm eff}$ [K]	11000±450	10950±250	11400±600	11680±150
log (g)	3.75±0.07	3.80 ± 0.10	3.89±0.09	3.68 ± 0.05

ζ Pegasi: future work

- ★ Disentangling high-dispersion spectra: FEROS and HARPS → confirmation (yes/no) of additional faint component announced by Zverko et al. (2016).
- Including RVs from literature and other archives.
- * Asteroseismology Spectroscopic Mode Identification.
- ***** Position of ζ Pegasi within sample of other known SPB stars HR diagram

In Cooperation with: E. Paunzen¹, I. R. Stevens²

¹ Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, The Czech Republic ² School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK

- * The spectroscopic follow-up of TESS planetary candidates
- Planetary candidates are selected based on their detectability with meter-class telescopes. Most frequent targets are Hot and Warm Jupiter candidates.

Furthermore, an important goal is also an initial screening of properties of exoplanet stellar hosts.

- * 1.5-m CTIO SMARTS CHIRON spectrograph (Chille)
- 2-m Perek Telescope OES spectrograph (Ondřejov)
- * 2-m Alfred-Jensch Telescope, TLS spectrograph (Tautenburg, Germany)
- * 1.5-m ESO Telescope, PlatoSpec spectrograph (Chille)
- * 1.3m Telescope, MUSICOS spectrograph (SP, Slovakia)

RV precision depends on (i) signal-to-noise ratio SNR (ii) projected rotational velocity v sin i, (iii) spectral resolution R, (iv) wavelength coverage B, (v) line density f as (Hatzes et al. 2010):

Plavchan et al. 2013

TOI-120b: a giant planet in an 11.54-day eccentric orbit around a bright (V = 7.9) G-type subgiant. Mass of 0.415 ± 0.020 M_J and a radius of 1.026 ± 0.026 R_J.
 (Nielsen et al. 2019)

*** TOI-677b**: has a mass of $1.236 \pm 0.068 \text{ M}_{J}$, a radius of $1.170 \pm 0.030 \text{ R}_{J}$, and orbits its bright host star (*V* = 9.8 mag) with an orbital period of 11.2366 d, on an eccentric orbit $e = 0.435 \pm 0.024$ (Jordan et al. 2019).

ΤΟΙ	$R_{P}[R_{\oplus}]$	P _{orb} [d]	R_{P}/R_{\star}	T _{eff} [K]	$V_{ m mag}$
481	11.794	10.33	0.0614	5735	9.97
2314	11.92	15.937	0.059	6140	12.29
2589	11.739	61.627	0.0942	5580	11.41

In Cooperation with: I. Carleo¹, D. Gandolfi², J. Schulte³, P. Kabáth⁴, M. Skarka⁴, E. Guenther⁵, H. Boffin⁶

¹ Departamento de Astrofísica, Universidad de La Laguna (ULL), Tenerife, Spain
 ² Dipartimento di Fisica, Universita degli Studi di Torino, Torino, Italy
 ³ Department of Physics and Astronomy, Michigan State University, USA
 ⁴ Astronomical Institute of the Czech Academy of Sciences, Ondřejov, Czech Republic

- ⁵ Thüringer Landessternwarte Tautenburg, Tautenburg, Germany
- ⁶ ESO, Garching bei München, Germany

Thank you for your attention