Wind properties in the vicinity of the red giant in symbiotic binary EG Andromedae

N. Shagatova¹

A. Skopal¹, E. Kundra¹, R. Komžík¹, S. Yu. Shugarov^{1,2}, T. Pribulla¹

¹ Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovakia
 ² P.K. Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Russia

Symbiotic stars

- widest interacting binary stars (P≈few years)
- white dwarf + red giant
- neutral and ionized wind
- quiescent and active phases

S-type systems

S-type systems

D-type systems

– Mira-star 🛁

<u>radiative</u> acceleration of dust grains

Höfner 2015, ASP Conf. Ser. 497, 333

S-type systems

D-type systems

- Mira-star

O'Gorman et al. 2013, AJ 146, 98

radiative acceleration of dust grains

Höfner 2015, ASP Conf. Ser. 497, 333

- canonical β -law $v(r) = v_{\infty} \left(1 - \frac{R}{r}\right)^{\beta}$

- **steeper** v(r) for cooler stars

Decin et al. 2015, A&A 574, A5

EG Andromedae

- quiet symbiotic star (no recorded outburst)
- white dwarf (WD) + red giant (RG)
- $-P = 483 \text{ days, } i \approx 80^{\circ}$

- RG:
$$R = 75 \pm 10 R_{sun}$$
, $L \approx (1 - 2) \times 10^{3} L_{sur}$

- mass transfer via stellar wind
- RG wind terminal velocity of ~ 30 km/s

- many absorption lines of molecules and atoms originating in the cool giant's wind

Observations

- 53 optical spectra from years 2016 2023
 - 1.3m telescope at Skalnaté Pleso, R = 30000, λ = 4200 7300 Å
 - UBVR_c photometry for flux calibration (Sekeráš et al. 2019, G2, AAVSO)

- typical systematic error of radial velocity 0,2 - 0,6 km/s

Orbital variability of the FeI absorption lines

- **slow outflow** up to -5 km/s - **inflow** values around $\varphi = 0.1$

 $v_r^{G}(\phi)$ - radial velocity of the red giant v_{sys} = -94.88 kms⁻¹ (Kenyon & Garcia 2016) - Gaussian fits using Fityk (Wojdyr 2010)

- absorbed fluxes: maxima at ϕ ~ 0.6
 - --→ asymmetry of the circumstellar matter distribution

Model atmosphere

- to model spectral profiles:

- 10 Fe I absorption lines (5151 6469 Å)
- 10 orbital phases
- <u>MARCS</u> model (1 1.1 R_a):
 - Gustafsson et al. 2008

 $N_{\rm H}$

- spherical geometry, $\rm T_{eff}$ = 3700 K, M = 1.0 $\rm M_{Sun}$, [Fe/H] = 0

- simplified <u>extension</u> (1.1 - 150 R_a):

- $N_{\rm H}$ and T at 150 R_g estimated from hydrodynamical simulation of M-giant wind (Wood et al. 2016) - asymmetric conical shape of the neutral zone taken into

account

1 1/	$r[R_g]$	1 - 1.1	1.1 - 150	150
$r) = \frac{n_1}{2\lambda_1 R_{\rm g}} \frac{1 + \xi r^{1-K}}{r^2}$	$\begin{matrix} N_{\rm H} \\ T \\ P_e \end{matrix}$	MARCS MARCS MARCS	interpolation by function from Shagatova et al. $(2016)^{a}$ interpolation by exponential + linear function interpolation by exponential function	10^4 cm^{-3} (Wood et al. 2016) 30 K (Wood et al. 2016) $10^{-17} \text{ dyne/cm}^2$ (dense ISM clouds) ^b

Line profile of FeI absorption lines

- atmosphere layer / distance from center and radial velocity as free parameters
- several broadening mechanisms included:
- natural, pressure, thermal and microturbulence
- Gray 2005, Halenka & Madej (2002), NIST and VALD databases
- pressure broadening was treated as originating from the collisions with neutral hydrogen
- rotational
- v_{rot}sin(i) as a free parameter
- Python function rotBroad (PyAstronomy.pyasl library)

- macroturbulence

- typical value for RGs is v_{mac} = 3 km/s
- to obtain lower and upper limits of v_{rot}sin(i) two isotropic Gaussian macroturbulence models with v_{mac} = 0 and 3 km/s

- instrumental

- broadGaussFast function (PyAstronomy.pyasl library)
- at 5151 6469 Å, the spectral resolution of our spectra goes from \approx 39100 to 24000

Line profile of FeI absorption lines

- models with and without macroturbulence:
 -→ negligible effect on resulting depths in the atmosphere
- **v**_{rot}**sin(i)** values <u>can be affected</u>:
 - --> by potential blending of the spectral line
 - --→ by comparable strength of instrumental broadening
- other limits:
 - --→ while neutral area shape is asymmetric, the distribution of physical quantities is symmetric

Height in the atmosphere / column density

 r represents the maximal depth at which the integration of the line-profile stops, and corresponds to the deepest layer of origin of the spectral line

- heights are within \approx 0.02 to \approx 0.06 R_q above the RG photosphere

- higher column density in the neutral zone between the apex of its cone and the RG

Radial and rotational velocities

- total <u>averages ± std</u>:

v_. = - 0.9 ± 1.3 km/s

at $r = 1.03 \pm 0.01 R_{g}$

 $v_{rot} \sin(i) = 10.9 \pm 2.0 \text{ km/s}$

Comparison with velocity profiles derived from measured H^o column densities

Implications from measured radial velocities

Kravchenko et al. 2018

Implications for wind focusing towards the orbital plane

a dense material occulting fraction of the polar wind below

Seaquist et al. 1993; Shagatova et al. 2016, 2021

- focusing by rotation

- for $i = 80^{\circ} \pm 10^{\circ}$:

S-type systems

Implications for wind focusing towards the orbital plane

- gravitational focusing

Implications for wind focusing towards the orbital plane

Lee et al. 2022

Conclusions

 radial velocities of Fe1 absorption lines indicate slow wind outflow of up to 13% of terminal velocity, inflow values were also measured

- typical outflow velocity at the distance of ~ 0.03 R_g above the giant's surface
 is ~ 1 km/s

- the dispersion of radial velocity values of several km/s may be a sign of the complex nature of the near-surface mass flows in the RG atmosphere

- rotational velocity of the RG of ~ 11 km/s

 support for both rotationally and gravitationally induced focusing of the wind as possible acting mechanism

Conclusions

 radial velocities of Fe1 absorption lines indicate slow wind outflow of up to 13% of terminal velocity, inflow values were also measured

- typical outflow velocity at the distance of ~ 0.03 R_g above the giant's surface
 is ~ 1 km/s

- the dispersion of radial velocity values of several km/s may be a sign of the complex nature of the near-surface mass flows in the RG atmosphere

- rotational velocity of the RG of ~ 11 km/s

 support for both rotationally and gravitationally induced focusing of the wind as possible acting mechanism Thank you for your attention!