Multiple and multiply-eclipsing stellar systems

Theodor Pribulla

(in collaboration with T. Borkovits, Z. Garai, R. Komžík, S. Rappaport et al.)

Astronomical Institute SAS colloquium February 9, 2022

Multiple stellar systems

- * Triple, quadruple, quintuple etc. groups of stars
- * Hierarchy, hierarchical multiple stars
- * Stability and perturbations of the orbits
- * Open questions: formation, evolution, existence of substellar bodies

Hierarchy & configuration

Tokovinin (2021, Universe)

Orbital perturbations

- * In triples short-term, long-term, secular perturbations with characteristic periods: P_{12} , P_3 , P_3^2/P_{12} and amplitudes $(P_{12}/P_3)^2$, P_{12}/P_3 , 1
- * The tighter the system the larger short and long-term perturbations
- * Secular effects most-easy to detect (apsidal motion, nodalline precession)

Multiply-eclipsing multiples

- * First such system known: V994 Her (Lee et al., 2008, MNRAS)
- * Complicated eclipse shapes + dynamical perturbations
- * Photometry enables to determine absolute parameters
- * TYC 7037-89-1: a Sextuply Eclipsing Sextuple Star (Powell et al., 2021, AJ)

KOI-126

- * Multiply-eclipsing
- * G dwarf + 2 M dwarfs with $M = 0.2M_{\odot}$
- * $P_3 = 33.9 \text{ d}, P_{12} = 1.8 \text{ d}$
- Inner orbit precession
 with P ~ 1000 d ==>
 changes in the eclipse
 geometry
- Masses determined with 1%, radii with 0.5% precision

Carter et al. (2011, Science)

Three new triply eclipsing triples

New and discovery data

- * TIC193993801, P_{12} = 1.4313 d, P_{3} = 49.28 d
- * TIC388459317, P_{12} = 2.1847 d, P_{3} = 89.86 d
- * TIC052041148, P_{12} = 1.7862 d, P_{3} = 177.0 d
- * Combination of the TESS and ASAS-SN enabled to find the outer orbital periods, P_3
- * Spectroscopy from Astelco 1.3m and MUSICOS for TIC 193993801 (V = 11.27 ==> problematic)
- * Photometry from ASA800 (0.8m, f/8, griz system) at Szombathely (HU), and other telescopes

TIC193993801

TIC388459317

Outer-orbit eclipses observed by TESS and their best photodynamic fits

RV curve of TIC193993801 obtained from the spectroscopic observations with MUSICOS at SP 1.3m

BFs

MUSICOS spectra with SNR 15-18, F8V template, 4900-6100 Å range used, eclipsing pair noisy

Analysis & results

- Multi-body numerical integrator, multi-band LC, ETV and RV, SED synthesis
- * MCMC analysis to determine posterior distribution of parameters
- * Main result: 3-10% absolute parameter accuracy without RV data, 1-3% with RVs (TIC193993801)
- * All systems are co-planar within 1-3°
- * Vast range of outer-orbit eccentricities 0.003, 0.1,
 0.62 ==> different formation ?
- * Published in Borkovits et al. (2022, MNRAS)

BU CMi: a multiply eclipsing quadruple

- * Bright object with $V_{\text{max}} = 6.42$
- According to the GCVS it is an EA with P = 2.93 d and a displaced secondary minimum
- * Volkov, Kravtsova & Chochol (2021, Astronomy Reports) discovered it is a doubly eclipsing quadruple system, with 2+2 hierarchy, P_{12} = 2.93 days, P_{34} = 3.26 days,
- * The outer period estimated as $P_{1234} = 6.6$ years
- * MUSICOS@SP 1.3m, MASCARA, TESS, 60cm of INASAN
- * Gaia EDR3, π = 4.014(33) mas, astrometric over-noise as large as 73 σ

High-amplitude and fast timing variability of the A and B subsystems interpreted by Volkov et al. (2021, Astronomy Reports) by nutation

Apsidal motion timescale of ~ 25 yr (Jayraman et al., 2021, proc.) Suspected "nutation" ==> perturbations with P_{1234} timescale BU CMi: P_{1234} =100-150 days ! ETV: dynamical effects ~ LTTE !

BU CMi (modeling)

- * Quadruple spectrophotometric model, synthetic spectra + TESS light curves
- Fast component rotation: no RVs line profiles strongly blended ==> direct modeling of the line profiles
- * Up to 42 parameters to fit the spectra and the photometry (33 actually)
- * Analytic proximity effects, LD, apsidal motion, Doppler beaming
- * Optimum spectral templates searched (T_{eff} , log g)

4470-4490Å

Multi-component global fit to 41 spectra from MUSICOS, spectrum around Mg II 4481 (20 profiles shown)

Corresponding fit the TESS photometry sector #34

Tomographic disentangling of spectra assuming model RVs, iterative technique of Bagnuolo & Gies (1991, ApJ) used, correct disentangling depends on flux ratios

BU CMi (results: orbits)

- * $P_{1234} \sim 120$ days: the tightest quadruple system known
- * Previous record holder: VW LMi (Pribulla et al., 2008, 2020, MNRAS), $P_{12} = 0.47$ d, $P_{34} = 7.93$ d, $P_{1234} = 355$ d
- * Dynamically driven apsidal motion: U_{12} = 25.9 yr, U_{34} = 29.0 yr
- * The outer orbit inclination angle ($\sum M$ wrt. $M_{12} \sin^3 i_{1234}$ and $M_{34} \sin^3 i_{1234}$) is about 90° (=flat)
- * Outer eclipses not detected yet

BU CMi (results: tidal evolution)

- * Inner orbits are eccentric $e_{12} = 0.214$, $e_{34} = 0.243$, not circularized yet $\Omega = 2 \pm 27e$
- * Pseudo-synchronous rate:

$$\frac{\Omega}{\omega} = \frac{2+27e^2}{2+15e^2}$$

- * For BU CMi $\Omega_{12}^{}/\omega_{12}^{}=1.204$ and $\Omega_{34}^{}/\omega_{34}^{}=1.246$
- * Observed rates are 1.31 to 1.55 times pseudosynchronous rate
- * Rotation not synchronized ==> very young ?

Conclusions

- * Multiple systems show a plethora of dynamical effects on various time scales
- * Satellite data: a treasure trove of new systems
- Strong perturbations and mutual eclipses:
 determination of parameters without spectroscopy
- Further development: perturbations, relativistic effects, multi-dataset approach (Gaia DR3 approaching)

Thank you !