Multiple and multiply-eclipsing stellar systems

Theodor Pribulla

(in collaboration with T. Borkovits, Z. Garai, R. Komžík, S. Rappaport et al.)

Astronomical Institute SAS colloquium February 9, 2022

Multiple stellar systems

* Triple, quadruple, quintuple etc. groups of stars
* Hierarchy, hierarchical multiple stars
* Stability and perturbations of the orbits
* Open questions: formation, evolution, existence of substellar bodies

Hierarchy \& configuration

Tokovinin (2021, Universe)

Orbital perturbations

* In triples short-term, long-term, secular perturbations with characteristic periods: $P_{12}, P_{3}, P_{3}^{2} / P_{12}$ and amplitudes $\left(P_{12} / P_{3}\right)^{2}, P_{12} / P_{3}, 1$
* The tighter the system the larger short and long-term perturbations
* Secular effects most-easy to detect (apsidal motion, nodalline precession)

Multiply-eclipsing multiples

* First such system known: V994 Her (Lee et al., 2008, MNRAS)
* Complicated eclipse shapes + dynamical perturbations
* Photometry enables to determine absolute parameters
* TYC 7037-89-1: a Sextuply Eclipsing Sextuple Star (Powell et al., 2021, AJ)

KOI-126

* Multiply-eclipsing
* G dwarf + 2 M dwarfs with $M=0.2 \mathrm{M}_{\odot}$
* $P_{3}=33.9 \mathrm{~d}, P_{12}=1.8 \mathrm{~d}$
* Inner orbit precession with $P \sim 1000 \mathrm{~d}==>$ changes in the eclipse geometry
* Masses determined with 1%, radii with 0.5% precision

Carter et al. (2011, Science)

Three new triply eclipsing triples

New and discovery data

* TIC193993801, $P_{12}=1.4313 \mathrm{~d}, P_{3}=49.28 \mathrm{~d}$
* TIC388459317, $P_{12}=2.1847 \mathrm{~d}, P_{3}=89.86 \mathrm{~d}$
* TIC052041148, $P_{12}=1.7862 \mathrm{~d}, P_{3}=177.0 \mathrm{~d}$
* Combination of the TESS and ASAS-SN enabled to find the outer orbital periods, P_{3}
* Spectroscopy from Astelco 1.3m and MUSICOS for TIC 193993801 ($V=11.27$ ==> problematic)
* Photometry from ASA800 ($0.8 \mathrm{~m}, \mathrm{f} / 8$, griz system) at Szombathely (HU), and other telescopes

RV curve of TIC193993801 obtained from the spectroscopic observations with MUSICOS at SP 1.3 m

MUSICOS spectra with SNR 15-18, F8V template, 4900-6100 Å range used, eclipsing pair noisy

Analysis \& results

* Multi-body numerical integrator, multi-band LC, ETV and RV, SED synthesis
* MCMC analysis to determine posterior distribution of parameters
* Main result: 3-10\% absolute parameter accuracy without RV data, 1-3\% with RVs (TIC193993801)
* All systems are co-planar within 1-3 ${ }^{\circ}$
* Vast range of outer-orbit eccentricities $0.003,0.1$, $0.62==>$ different formation ?
* Published in Borkovits et al. (2022, MNRAS)

BU CMi

BU CMi: a multiply eclipsing quadruple

* Bright object with $V_{\text {max }}=6.42$
* According to the GCVS it is an EA with $P=2.93 \mathrm{~d}$ and a displaced secondary minimum
* Volkov, Kravtsova \& Chochol (2021, Astronomy Reports) discovered it is a doubly eclipsing quadruple system, with $2+2$ hierarchy, $P_{12}=2.93$ days, $P_{34}=3.26$ days,
* The outer period estimated as $P_{1234}=6.6$ years
* MUSICOS@SP 1.3m, MASCARA, TESS, 60cm of INASAN
* Gaia EDR3, $\pi=4.014$ (33) mas, astrometric over-noise as large as 73 σ

High-amplitude and fast timing variability of the A and B subsystems interpreted by Volkov et al. (2021, Astronomy Reports) by nutation

Apsidal motion timescale of ~ 25 yr (Jayraman et al., 2021, proc.) Suspected „nutation" $==>$ perturbations with P_{1234} timescale BU CMi: $P_{1234}=100-150$ days !
ETV: dynamical effects ~ LTTE !

BU CMi (modeling)

* Quadruple spectrophotometric model, synthetic spectra + TESS light curves
* Fast component rotation: no RVs - line profiles strongly blended ==> direct modeling of the line profiles
* Up to 42 parameters to fit the spectra and the photometry (33 actually)
* Analytic proximity effects, LD, apsidal motion, Doppler beaming
* Optimum spectral templates searched $\left(T_{\text {eff }}, \log g\right)$

4470-4490

Multi-component global fit to 41 spectra from MUSICOS, spectrum around Mg II 4481 (20 profiles shown)

Corresponding fit the TESS photometry sector \#34

Tomographic disentangling of spectra assuming model RVs, iterative technique of Bagnuolo \& Gies (1991, ApJ) used, correct disentangling depends on flux ratios

BU CMi (results: orbits)

* $P_{1234} \sim 120$ days: the tightest quadruple system known
* Previous record holder: VW LMi (Pribulla et al., 2008, 2020, MNRAS), $P_{12}=0.47 \mathrm{~d}, P_{34}=7.93 \mathrm{~d}, P_{1234}=355 \mathrm{~d}$
* Dynamically driven apsidal motion: $U_{12}=25.9 \mathrm{yr}, U_{34}=$ 29.0 yr
* The outer orbit inclination angle ($\sum M$ wrt. $M_{12} \sin ^{3} i_{1234}$ and $M_{34} \sin ^{3} i_{1234}$) is about 90° (=flat)
* Outer eclipses not detected yet

BU CMi (results: tidal evolution)

* Inner orbits are eccentric $e_{12}=0.214, e_{34}=0.243$, not circularized yet
* Pseudo-synchronous rate:

$$
\frac{\Omega}{\omega}=\frac{2+27 e^{2}}{2+15 e^{2}}
$$

* For BU CMi $\Omega_{12} / \omega_{12}=1.204$ and $\Omega_{34} / \omega_{34}=1.246$
* Observed rates are 1.31 to 1.55 times pseudosynchronous rate
* Rotation not synchronized ==> very young ?

Conclusions

* Multiple systems show a plethora of dynamical effects on various time scales
* Satellite data: a treasure trove of new systems
* Strong perturbations and mutual eclipses: determination of parameters without spectroscopy
* Further development: perturbations, relativistic effects, multi-dataset approach (Gaia DR3 approaching)

Thank you!

