Using wide hot subdwarf binaries to constrain binary interaction mechanisms

Astronomical Institute SAV, Tatranská Lomnica 24-04-2019

Joris Vos

Maja Vučković, Alexey Bobrick, Roy Østensen, Peter Németh, Xuefei Chen, Zhanwen Han, Francisco Molina, Stephan Geier, Thomas Bouderau, Brad Barlow

FONDECYT Fondo Nacional de Desarrollo Científico y Tecnológico

Alexander von Humboldt Stiftung/Foundation

Hot subdwarf-B stars

- Look like B-type stars with high surface gravity
- Evolved low mass stars, 1 3 Msol
- Located at extreme blue end of the horizontal branch
- Core He burning
- Lost the majority of their H envelope on the RGB

Hot subdwarf evolution

Hot subdwarf formation

- long periods (> 2 year)
- sdB + MS

- short periods (< 30 d)
- sdB + MS
- sdB + WD/BD

• single sdBs

Hot subdwarf formation

Benefits for theory: double lined, only formed in binaries, from a single population (M=0.45 +- 0.07)

Binary interaction

Effective temperature

Roughly 1/3 of low mass binaries will at some point interact: Supernova Ia, blue stragglers, sdBs, algols, CVs, ...

Issues:

- Postulated increase in massloss before contact
- Precise description of common envelope
- Accretion efficiency onto the companion
- Mass-loss fractions during RLOF
- Formation/existence of circumbinary disk
- Interaction between disk and binary

Observing Campaign 2009 - Now

1) Period – Eccentricity

- Could be 2 distinct groups
- Main group with orbital periods around 2 4 years
- Theory predicts circular systems
- Almost all systems have significantly eccentric orbits

Period – eccentricity comparison

2) Period – Accreted mass

3) Period – Mass ratio

Binary interaction models

VERSION 1 Period - Eccentricity

- Cover observed period range
- Explain observed eccentricity
- Little predictive power

VERSION 2 Period – Mass ratio

- Improved RLOF model
- Stability
- Period-mass ratio relation

Paxton et al. 2011, 2013, 2015, 2019

VERSION 1: Mass loss

VERSION 1: Circumbinary disks

Circumbinary disk

- Total Mass
- Life time

orbital eccentricity / period

• Mass distribution

1) Only models with phase dependent RLOF

2) Models with phase dependent RLOF and a CB disk

Period – Eccentricity: Models

VERSION 2: Improved RLOF

Mass loss fractions

- Analytical treatment of mass loss through L1 and L3 (less free variables)
- Mass accretion onto companion until breakup velocity is reached

Initial setup determines final parameters (P, q)

$$e = 0$$

Period – Final donor mass

Known for LM WD's (e.g. Istrate et al. 2016), sdBs (e.g. Chen et al. 2013)

Period – [Fe/H]

Interesting for sdBs because their mass range is very small.

Link to progenitor systems

Valid for all Horizontal branch binaries

What is next?

SPH simulations to check analytical results

500 Pc samples

- A volume limited sample of hot subdwarfs
- A volume limited sample of RGBs
- Based on the GAIA DR2 catalog
- Ideal to constrain BPS results

500 Pc samples

- All sky, using telescopes in Chile and Europe
- Ideal for student projects

Europo

2m Perek telescope

Science goals:

- Stability of RLOF on RGB
- Formation of hot subdwarfs
- Formation of He-Wds and HB objects
- Red giant binaries
- Search for lithium RGs
- Search for red giant binaries with mass transfer history
- Stellar winds on the RGB
- Can be combined with galactic archaeology surveys

Summary

- sdB+MS binaries are ideal systems to study stable RLOF on the RGB
- 25 binaries have now been analyzed
- Orbital periods range from 1 4 years
- Almost all systems are eccentric, which can be explained by phase depended mass loss in combination with the formation of a circumbinary disk during the RLOF phase
- The main sequence companions accrete very little mass
- Strong correlation between mass-ratio and orbital period.
- Orbital periods and mass ratios match theoretical predictions
- Model shows relations between Period [Fe/H] and Progenitor mass with q and [C/N]