Counterbalancing iridium coating stress for astronomical X-ray mirrors

Authors:

<u>Thorsten Döhring</u> Anne-Catherine Probst Manfred Stollenwerk Julien Lumeau Thomas Begou

Counterbalancing iridium coating stress for astronomical X-ray mirrors

Agenda:

- Programmatic context
- Requirements for mirror coatings
- Experimental set-up
- The challenge of coating stress
- Measured iridium coating stress
- Stress compensation by SiO₂
- Stress compensation by Cr layer
- Summary and Outlook

Programmatic context

The coating development at Aschaffenburg University is embedded in international collaborations with groups from other universities and institutes. For the results of the TRILAMICO-F project presented here bi-national funding by the Bavarian-French Academic Centre BFHZ has been granted.

 Funding agency:
 Bayerisch-Französisches Hochschulzentrum (BFHZ)

 Image: Centre de Coopération Universitaire Franco-Bavarois

Introduction: New technology needed

Next generation X-ray observatories require:

- apertures of several meters
- large effective areas
- good angular resolution
- stringent mass budgets

Previously used mirror technologies are not able to fulfil the challenging requirements of future X-ray telescopes.

→ Development of new technologies for X-ray mirrors is needed.

Wolter-I design: Curved mirrors integrated in nested coaxial shells

This design is followed up by the Max-Planck-Institute for extraterrestrial physics. Substrates of mirror segments are formed by indirect hot slumping of thin glass sheets.

Lobster-Eye design: Flat silicon wafer substrates

This design is followed up by our partners of CVUT Prague. In a bionic approach the mirror arrangement adopts the focusing principle of a lobster eye.

Requirements for X-ray mirror coatings

General requirements for grazing incidence X-ray mirrors coatings are:

- high X-ray reflectivity
 → high-Z coating materials (→ Ir)
 → low roughness and high density
- no mirror shape deformation introduced by the coating
 → low coating stress
- no degradation of the mirrors during storage and in space
- coating process suitable for serial production

Iridium coated X-ray mirror

Experimental set-up

Sputtering chamber

Schematic set-up

Aschaffenburg University is using sputtering equipment for the coating development of iridium reflection layers for X-ray mirrors. The Institut Fresnel has similar - more industrial - equipment.

The challenge of coating stress

Micrograph with stress induced cracks in Ir - monolayer

Micrograph of a Cr/Ir – bilayer without cracks

Iridium layers often suffer from high coating stress. In extreme cases, high stress levels can induce cracking or even delamination of the Ir coatings. The application of a thin Cr adhesion layer can overcome this problem.

Substrate material for stress evaluation

In the presented approach the substrate material (only) for the stress evaluation is the well-known material fused silica:

Diameter of substrate: $D_s = 25 \text{ mm}$ Thickness of substrate: $t_s = 1.00 \pm 0.05 \text{ mm}$ Young modulus: $E_s = 73 \text{ GPa}$ Poisson coefficient: $v_s = 0.16$ Flatness: $\approx \lambda/4$ @ 532 nm

Stress measurement

The change in the substrate radius of curvature was measured with two white-light interferometers. Thereby the cross-calibrated results of Aschaffenburg University and of Institut Fresnel are consistent.

Mechanical coating stress is calculated from substrate radius of curvature change before (R_s) and after (R_{s+f}) deposition using the Stoney equation, given here for a single layer coating with thickness t_f

$$\sigma = \frac{E_{S} t_{S}^{2}}{6t_{f} (1 - v_{S})} \left(\frac{1}{R_{S+f}} - \frac{1}{R_{S}} \right)$$

Iridium coating stress

A linear relation is expected between the K_s/R_{norm} ratio and the film thickness t_f Measured iridium coating stress (slope): about -1870 MPa

Stress compensation by backside coating

Stress compensation by backside coating

A coating of the substrates backside with a thickness adapted SiO_2 layer is able to compensate the coating stress of the reflecting iridium layer.

Variation of chromium thickness

An intermediate chromium layer with adapted thickness is able to compensate the coating stress of a 30 nm thick reflecting iridium layer.

Summary and Outlook

- Programmatic context of TRILAMICO-F.
- Requirements for X-ray mirror coatings.
- Challenge of low stress iridium layers.
- Intermediate chromium adhesion layer are needed for proper iridium coatings.
- Backside coatings of SiO₂ are able to compensate the iridium coating stress.
- An adapted chromium layer thickness is able to compensate the high iridium coating stress.

Acknowledgement: The TRILAMICO -F project is funded by BFHZ. Additional financial support came from the Bavarian State Ministry for Education and Culture, Sciences and Art, BAYHOST, and BFHA.

Summary and Outlook

- Programmatic context of TRILAMICO-F.
- Requirements for X-ray mirror coatings.
- Challenge of low stress iridium layers.
- Intermediate chromium adhesion layer are needed for proper iridium coatings.
- Backside coatings of SiO₂ are able to compensate the iridium coating stress.
- An adapted chromium layer thickness is able to compensate the high iridium coating stress.

Thank you for your attention.

Acknowledgement: The TRILAMICO -F project is funded by BFHZ. Additional financial support came from the Bavarian State Ministry for Education and Culture, Sciences and Art, BAYHOST, and BFHA.

