

Exoplanetary research in Ondřejov

Marek Skarka

Astronomical Institute of the Czech Academy of Sciences

Astronomical Institute of the CAS, Fričova 298, 251 65 Ondřejov Czech Republic

Astronomical Institute SAV, Stará Lesná

July 19, 2018

Astronomical Institute of CAS

- 1898 Ground purchased in Ondřejov
- 1928 Observatory donated to Czech state
- 1954 Observatory became a part of the Czech Academy of Sciences

Scientific cooperation: IAU, ESO (2007), ESA (2008)

~160 employs

Departments:

- Solar physics (spots, oscillations, eruptions, ALMA, Solar orbiter, GREGOR, EST)

- **Stellar physics** (hot stars, stellar atmospheres and winds, astroinformatics, exoplanets)

- **Interplanetary matter** (European and desert firebal network, asteroids)

- Galaxies and planetary systems (dynamics and kinematics of galaxies, interstellar matter, formation and fade of stars)

Science, public outreach, teaching activities

www.asu.cas.cz

Exoplanet group

P. Kabáth (head, petr.kabath@asu.cas.cz), T. Klocová (postdoc), M. Skarka (postdoc), E. Plávalová (postdoc), M. Blažek (PhD student), D. Dupkala, J. Dvořáková (BSc students)

- **RV spectroscopic follow-up of K2/TESS/PLATO candidates** •
- Exoplanetary atmospheres photometry, transmission • spectroscopy
- Stellar activity and exoplanets
- PLATO space mission ground based support ٠

European Southern Observatory

+ close cooperation with Tautenburg observatory

www.eso.org

R_p/R_{\star}

Kabáth et al., in prep.

Perek telescope – Coude focus

Perek telescope – command center

- Installed in 2007 (Koubský et al. 2007)
- R~44000, 360-950 nm
- Commercial photo lens
- Nitrogen-cooled
- Environment at ~21 Celsius degree
- Aluminium assembly
- ThAr lamp for calibration

- Installed in 2007 (Koubský et al. 2007)
- R~44000, 360-950 nm
- Commercial photo lens
- Nitrogen-cooled
- Environment at ~21 Celsius degree
- Aluminium assembly
- ThAr lamp for calibration

- Installed in 2007 (Koubský et al. 2007)
- R~44000, 360-950 nm
- Commercial photo lens
- Nitrogen-cooled
- Environment at ~21 Celsius degree
- Aluminium assembly
- ThAr lamp for calibration

- Installed in 2007 (Koubský et al. 2007)
- R~44000, 360-950 nm
- Commercial photo lens
- Nitrogen-cooled
- Environment at ~21 Celsius degree
- Aluminium assembly
- ThAr lamp for calibration
- Magnitude limit at 13 mag

Radial velocity determination (Doppler shift of the lines)

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$$

To reach sub-km/s accuracy of RVs we adopted these steps:

- Scientific spectrum is extract using narrow aperture
- Use only one ThAr calibration spectrum taken at the end of night is used
- For each scientific frame a calibration spectrum is extracted from ThAr frame
- Spectra are shifted using telluric lines in a narrow region
- All spectra are corrected of the motion of the Earth (29.7 km/s) and Earth rotation (460 m/s)
- With such approach we are able to get
 - RMS~80 m/s over one night
 - RMS~110 m/s over one month
 - RMS~350 m/s over one year

To reach sub-km/s accuracy of RVs we adopted these steps:

- Scientific spectrum is extract using narrow aperture
- Use only one ThAr calibration spectrum taken at the end of night is used
- For each scientific frame a calibration spectrum is extracted from ThAr frame
- Spectra are shifted using telluric lines in a narrow region
- All spectra are corrected of the motion of the Earth (29.7 km/s) and Earth rotation (460 m/s)
- With such approach we are able to get
 - RMS~80 m/s over one night
 - RMS~110 m/s over one month
 - RMS~350 m/s over one year

Radial velocity standard HD 109358, G0V, V=4.3 mag

Preliminary tests of the iodine cell suggest stability of 10 m/s!

To reach sub-km/s accuracy of RVs we adopted these steps:

- Scientific spectrum is extract using narrow aperture
- Use only one ThAr calibration spectrum taken at the end of night is used
- For each scientific frame a calibration spectrum is extracted from ThAr frame
- Spectra are shifted using telluric lines in a narrow region
- All spectra are corrected of the motion of the Earth (29.7 km/s) and Earth rotation (460 m/s)
- With such approach we are able to get
 - RMS~80 m/s over one night
 - RMS~110 m/s over one month
 - RMS~350 m/s over one year

Kabáth et al. 2018, submitted to PASP

Radial velocity standard HD 109358, G0V, V=4.3 mag

Preliminary tests of the iodine cell suggest stability of 10 m/s!

• Exoplanets

• Exo-candidates (RVs; EPIC 201534540, EPIC 210925707 ...; Skarka et al., in prep.)

- Exoplanets
 - Exo-candidates (RVs; EPIC 201534540, EPIC 210925707 ...; Skarka et al., in prep.)
 - Exoatmospheres (MASCARA-1b,2b; KELT-9b)

- Exoplanets
 - Exo-candidates (RVs; EPIC 201534540, EPIC 210925707 ...; Skarka et al., in prep.)
 - Exoatmospheres (MASCARA-1b,2b; KELT-9b)
 - Test stars (51 Peg, sig Dra, eps Eri)
- Brown-dwarf binaries (GJ 504, 51 Eri ...)
- 'Balona stars'
- + additional science

- Exoplanets
 - Exo-candidates (RVs; EPIC 201534540, EPIC 210925707 ...; Skarka et al., in prep.)
 - Exoatmospheres (MASCARA-1b,2b; KELT-9b)
 - Test stars (51 Peg, sig Dra, eps Eri)
- Brown-dwarf binaries (GJ 504, 51 Eri ...)
- 'Balona stars'
- + additional science

Future plans

- Employ iodine cell
- Employ OPERA
- Get involved in an international obs program(s), PLATO consortium
- Build a spectrograph at La Silla (PLATOSpec)
- Establish an exoplanet community in Czech Republic

Thank you for your attention

