

Centrum Astronomiczne im. Mikołaja Kopernika Polskiej Akademii Nauk

Epsilon Persei and Epsilon Centauri observed by BRITE constellation

Elżbieta Zocłońska

Stara Lesna 2018-05-16

DSS2 optical HEALPix survey, color (R=red[~0.6um]/G=average/B=blue[~0.4um]) - Digitized Sky Survey - STScl/NASA, Colored & Healpixed by CD

Źródło: J.A. Toala [2017] XMM-Newton,WISE

5'

3

🗱 E Per

🗱 E Per e 🗴 E Cen

BRITE satellites constellation

2018-05-16 Earth Inertial Axes 7 May 2018 18:00:00.000 Time Step: 60.00 sec

/ 🛆 AGI

Fimeline View 1									
📋 🛗 🖅 🛛 🛞 Scenario Availabili	ty 🔻 🥖 🔛	🛃 😵 Sce	nario Analysis	Period 🔻 🥖 🕻) 🛍 🗙	0		
0 20:00 22:00 0	0:00	02:00 0)4:00	06:00	08:00 10	:00	12:00	14:00	16:00
07 May 2018 18:00:00.000	18:00		00:00	****	06:00			12:00	
🖄 Warsaw AvailabilityIntervals 💿	Warsaw Av 07 May 201	ailabilityInterval 8 18:00:00.00 -	s 08 May 2018	18:00:00.00					
🔑 Satellite-Unibrite-To-Star-EpsCen Acc: 🝩	S Satel 0 07 M	Satel Sat 07 M 07	tel Satel M 08 M	Satel Sate 08 M 08 M	el Satel Sa 4 08 M 08	tel Satel	Satel S 08 M 0	atel Sate 8 M 08 I	si Satel 1 08 M
🔑 Satellite-BriteAustria-To-Star-EpsCen . 🝩	Satel 07 M	Satel Satel 07 M 07 M	Satel S 07 M 0	atel Satel 8 M 08 M	Satel Satel 08 M 08 M	Satel 08 M	Satel Satel 08 M 08 M	Satel 08 M	Satel Sa 08 M 08
🔑 Satellite-BRITE-PL_Lem-To-Star-EpsC 💿	Sate S 07 M	Sate Sate	Sate Sat 07 M 08	te Sate M 08 M	Sate Sate 08 M 08 M	Sate S 08 M	Sate Sate	Sate 08 M	Sate Sate 08 M 08 M
🔑 Satellite-BRITE-PL_Heweliusz-To-Star 💿	S Sate 0 07 M	Sate Sat 07 № 07	te Sate M 07 M	Sate Sate 08 N 08 M	Sate Sate 08 M 08 M	sate 08 №	Sate Sate 08 M 08 M	Sate 08 M	Sate Sa 08 № 08
🔑 Satellite-BRITE-TORONTO-To-Star-Ep 💿	Sate 07 M	Sate Sate 07 M 07 M	Sate 07 M	Sate Sate 08 M 08 M	Sate Sate 08 M 08 M	Sate 08 M	Sate Sate 08 M 08 M	Sate 08 M	Sate Sat 08 M 08
	· .			EpsCen					
2018-05-16			eunibrite		JSKITE-PL_Heweinu	52			

•BRITE-PL_Lem

-

-

7 May 2018 18:00:00.000 Time Step: 60.00 sec

Jeleskop

Ground station in CAMK

Gwiandy type B Cepher

Beta Cephei star

- main sequence stars
- pulsating variable (change size and shape)
- mass from 8 to 18 M_{\odot}
- pulsation period 2 8 h
- β Cephei pulsations are triggered in the ionization zone of the iron-group elements.
- very complex pulsation patterns, multiperiodic radial and nonradial oscillators

Beta Cephei star

- main sequence stars
- pulsating variable (change size and shape)
- mass from 8 to 18 M_{\odot}
- pulsation period 2 8 h
- β Cephei pulsations are triggered in the ionization zone of the iron-group elements.
- very complex pulsation patterns, multiperiodic radial and nonradial oscillators

Asteroseismology

• determination of the interior structure of star by using its oscillations

Asteroseismology

- determination of the interior structure of star by using it oscillations
- variable and pulsating stars
- stellar oscillations generate motions and temperature variations on the surface

Asteroseismology

- determination of the interior structure of star by using it oscillations
- variable and pulsating stars
- stellar oscillations generate motions and temperature variations on the surface
- variations causes:
 - light
 - radial velocity
 - line profile changes.
Asteroseismology

- determination of the interior structure of star by using it oscillations
- variable and pulsating stars
- stellar oscillations generate motions and temperature variations on the surface
- variations causes:
 - light
 - radial velocity
 - line profile changes.
- pulsating stars can be studied both photometrically and spectroscopically, via time series measurements

Pulsation driving mechanism

κ - γ mechanism

β Cephei star – pulsation are triggered in the ionization zone of the iron group elements

Pulsation modes

radial modes non radial modes

These animations were produced by students Alexandra Chambers and Darran Baker as part of a course on Scientific Computing in the School of Physics at the University of Sydney.

Non radial oscillations

1=4, m=1

l=4, m=3

Source : asteroseismology of pulsating sdB stars; Simon Jeffery (Armagh Observatory)Vik Dhillon (Sheffield University) Tom Marsh (Warwick University) Ramachandran (Armagh Observatory) Conny Aerts, Paul Groot (Nijmegen)MNRAS: July 2004

l=20, m=10

1=4, m=0

Line profile variations due to stellar pulsation

Angular Momentum transport

 ω – angular velocity

Stellar oscilations

acoustic mode (p modes) caused by pressure changes inside star

gravity mode (g modes) caused by gravity (bouyacy)

2018-05-16

Epsilon Persei HD24760

Beta Cephei star

Triple system

Main componen ϵ Per A: spectral type B1.5 III

Second component: spectral type A6, orbital period 14.069 days [Libich et al., 2005]

Third component: orbital period ~ 25.8 years

Fast rotating star

Multiple pulsation modes

Magnetic field

Epsilon Centaurii HD118716

Beta Cephei star

Binary system

Multiple pulsation modes

Time

Observational data analysis

Photometry

observoge z satelity

BRITE data analysis

BRITE data analysis

ε Cen HD118716

UB

Lem

UB-Centaurus-2014-05-17; HD118716; time [JD]: 2456794.5593; temp. mean = 26.4833 star = 15; pict = 12; frame ok = 1

LemCentaurus_2014-06-12; HD118716; time [JD]: 2456820.8097; temp. mean = 17.1703 star = 10; pict = 6; frame ok = 1

ε Cen HD118716

after reduction

Lem

HD118716

HD118716 - removed bad columns

HD118716 - removed bad columns and filtered by median filter

0

star: HD 25940, NAXIS1: 48, NAXIS2: 28 star: HD 24912, NAXIS1: 48, NAXIS2: 28 star: HD 33959, NAXIS1: 48, NAXIS2: 28 star: HD 32068, NAXIS1: 48, NAXIS2: 28 star: HD 32630, NA 0 -

0 -

0

0

0

BRITE FITS files

7% fv: Sun	nmary of UB_Centaurus2014	_5203.4632	28655.fits in E:/CAMK/BRITE/Tiger/Da	ita/2_Ce	ntaurus-	2014/UBr/s	
File Edit	Tools Help						
Index	Extension	Туре	Dimension			View	
= 0	Primary	Image	0	Header	Image	Table	
= 1	HD 138690	Image	28 × 29	Header	Image	Table	
= 2	HD 136504	Image	28 X 29	Header	Image	Table	
📕 З	HD 132200	Image	28 × 29	Header	Image	Table	
= 4	HD 132058	Image	28 X 29	Header	Image	Table	
= 5	HD 128898	Image	28 × 29	Header	Image	Table	
= 6	HD 128620	Image	28 X 29	Header	Image	Table	
7	HD 122451	Image	28 × 29	Header	Image	Table	
= 8	HD 125238	Image	28 X 29	Header	Image	Table	
= 9	HD 127973	Image	28 X 29	Header	Image	Table	
= 10	HD 129056	Image	28 X 29	Header	Image	Table	
= 11	HD 128345	Image	28 X 29	Header	Image	Table	
= 12	HD 134481	Image	28 X 29	Header	Image	Table	
= 13	HD 121263	Image	28 X 29	Header	Image	Table	
= 14	HD 121790	Image	28 X 29	Header	Image	Table	
= 15	HD 118716	Image	28 X 29	Header	Image	Table	
= 16	HD 120324	Image	28 X 29	Header	Image	Table	
= 17	HD 121743	Image	28 X 29	Header	Image	Table	
= 18	HD 120307	Image	28 × 29	Header	Image	Table	
= 19	HD 129116	Image	28 X 29	Header	Image	Table	
= 20	HD 134505	Image	28 X 29	Header	Image	Table	
= 21	HD 135379	Image	28 × 29	Header	Image	Table	
22	HD 136298	Image	28 X 29	Header	Image	Table	

2018-05-16

BRITE FITS files

				Y. Iv: Header of UB_Lentaurus2014_5203.46328655.hts[U] in E:/LAMK/BRITE/Tiger/Data/2
				File Edit Tools Help
File Edit Tools Help				Search for: Find Case sensitive? No
Index	Extension	Туре	Dimension	SIMPLE = T / file does conform to FITS standard
	Primary	Image	0	BITPIX = 8 / number of bits per data pixel
	LD 120600	Imaga	- 20 V 20	EXTEND = T / FITS dataset may contain extensions
	HD 130090	intage	20 / 25	COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronom
2	HD 136504	Image	28 X 29	COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A376359H
= 3	HD 132200	Image	28 X 29	EXTNAME = 'HEADER '
4	HD 132058	Image	28 X 29	VRSNFITS= 1
5	HD 128898	Image	28 X 29	VRSNDATA= '1.0.2.2 '
6	HD 128620	Image	28 X 29	TELESCOP= 'UniBRITE 20130716-4'
	HD 122451	Image	28 ¥ 20	CTLG_NUM= 39092
	110 122451	innage	20 / 25	OBSERVER= 'Centauri-UB_2e'
8	HD 125238	Image	28 X 29	RA = 221.496887207031 / [DEGREES]
= 9	HD 127973	Image	28 X 29	DEC = -51.3927764892578 / [DEGREES]
= 10	HD 129056	Image	28 X 29	EPOCH = 2014.195055
= 11	HD 128345	Image	28 X 29	DECJ2000 = 221.249539096079 / [DEGREES]
 12	HD 134481	Image	28 × 29	X_REF = 1993.50771697121
1 3	HD 121263	Image	28 X 29	I_REF = 1355.853/8260396 SAT ROLL= -91.4377833760688 / [DEGREES] Roll angle
		Imaga	20 ¥ 20	SETUP_ID= 1396280870
14	HD 121730	intage	20 / 25	SETUP_EX= 3475
1 5	HD 118716	Image	28 X 29	EXP_TIME= 1000 / [MS] Duration of Single Exposure in Stack
= 16	HD 120324	Image	28 × 29	S_TLE1_1= '00000005 00000-0 17617-4 0 1194'
I 17	HD 121743	Image	28 X 29	S_TLE2_0= '2 39092 098.6283 026.1222 0008724 2'
= 18	HD 120307	Image	28 X 29	5_1LL2_1= '22.5021 137.5464 14.34389994 19982' S TLE1 = '1 39092U 13009G 13196.00821066 .00000005 00000-0 17617-4 0 114
= 19	HD 129116	Image	28 X 29	CONTINUE '94 '
= 20	HD 134505	Image	28 × 29	S_TLE2 = '2 39092 098.6283 026.1222 0008724 222.5021 137.5464 14.34389994 199& CONTINUE '82 '
E 21	HD 135379	Image	28 X 29	Header Image Table
E 22	HD 136298	Image	28 × 29	Header Image Table 62

2018-05-16

ϵ Cen HD 118716 UniBRITE

FITS

ϵ Cen HD 118716 UniBRITE

FITS

observations in "chopping" mode ε Cen and ε Per

Lightcurve analysis

Lightcurve - last setup in normal mode

Lightcurve - last setup in chopping mode

Lightcurve analysis

frequency

ϵ Cen frequencies

Frequency BRITE HD118716

ϵ Cen frequencies

Frequency BRITE HD118716

Frequency --HD118716_Centaurus-2014_BAb_APa2s5_hjd_rf_E.dat
ε Cen

Photometry

BRITE – from space: **BRITE-Austria** UNIBRITE **BRITE Lem BRITE Toronto BRITE Heweliusz** APT – from ground

GATS - Krzysztof Kaminski, Wojciech Dimitrov, Monika Kamińska, Magdalena Polińska (Polinska et al., 2014)
AAVSO:

- Austria, Germany Berthold Stober, Manfred Schwarz, Siegfried Hold, Ulrich Waldschlager
- China Dong Li
- France (La Tourbiere) Olivier Garde
- USA (Baltimore)
- Lithuania (Moletai) Erika Pakstiene, Sarunas Mikolaitis
- Slovakia (Stara Lesna Observatory) Ernst Paunzen
- USA (McDonald Observatory) Elżbieta Zocłońska

Telescope diameter 2,1 m

Echelle type spectroscope

Wavelenght range 4341-4861Å

McDonald spectroscopy – ε Per

Si III 4553A

Stara Lesna spectroscopy – ε Per

Si III 4553A

Si III 4553A

Si III 4553A

Si III 4553A

Si III 4553A

Source: http://astro.unl.edu/naap/hr/hr_background1.htm

Si III 4553A

Source: http://astro.unl.edu/naap/hr/hr_background1.html

Radia velocity

Orbital period

Epsilon Persei- triple system with close binary period: Libich [2005]: P orb= 14.069 dni de Cat [2000]: P orb= 14.076 dni

Orbital phase

2018-05-16 FDECOMP. ver. 25 Apr 20

97

Frequencies [cycle/day]

- f=.17413498
- h=.16142715
- o=.07229716
- q=.39614309
- s=5.65844705
- j=6.23706979
- b=2.35783275
- c=3.91918773
- d=6.05413865
- ²⁰¹&⊕2!95661520

- n=2.69353726
- v=7.42876627
- a=2.28748068
- t=3.54325171
- i=7.60181326
- k=5.86961022

Mode identification

- frequencies from photometry
- radial velocity from spectroscopy
- mode identification in FAMIAS software using
 - moment method
 - line profile variation

ADU [counts]

file: BTr_AurPer-2016 6125 58010574 fits, star: HD 24760, UTC: 2017-03-06723-52:33, JD: 2457670.58011, HJD: 2457670.58363, exp_time: 3000[ms], SAT_STAT: OK, SAT_LONG: -51.9589, SAT_LAT: 63.8631, SAT_ATI: 661908.355, TLE_DIFF: -147.646, ELA_ANG: 65.069, NAD_RA: 175.0, NAD_DEC: -63.8631, NAD_PHI: -145.9989, NAD_THET: -39.1269, NAD_SEP 130.025, SOL_RA: 194.9338, SOL_DEC: -6.3735, SOL_ALTI: -63.753, SOL_ALTI: -63.8631, ATA , SOL_SEP, 116.658,

MAG_STAT: OK, MAG_FLD: 41417.523, acs_errors_X_1: 0.07553336024284363, acs_errors_Y_1: 0.013076430186629295, acs_errors_Z_1: -4.602215994964354e-05, temp0: [16.722351][C], temp1: [17.1395571][C], temp2: [16.943207][C], temp3: [16.673279][C]

file: BTr_AurPer-2016_6125.57986879.fits, star: HD 24760, UTC: 2017-03-06T23:52:33, JD: 2457670.57987, HD: 2457670.5834, exp_time: 3000[ms], SAT_STAT: OK, SAT_LONG: -50.9554, SAT_LAT: 65.0544, SAT_LAT: 660896.953, TLE_DIFF: -147.646, ELA_ANG: 65.684, NAD_RA: 175.9179, NAD_DEC: -65.0544, NAD_PHI: -147.5604, NAD_THET: -39.4672, NAD_SEP 130.657, SOL_RA: 194.9335, SOL_DEC: -6.3734, SOL_ALTI: -29.797, SOL_AZIN: -21.9097, SOL_PHI" -117.5203, SOL_THET: 13.8333, 'SOL SF2.

HD24760_20-AurPer-I-2016_BTr_setup2_APa3s2chop_R5.dat

HD24760_20-AurPer-I-2016_BTr_setup2_APa3s2chop_R5.dat

FITS and lightcurves from BRITE

General Information

Brite Satellites

- UniBRITE (UBr), red.
- BRITE Austria (BAb), blue
- BRITE Lem (BLb), blue
- BRITE Heweliusz (BHr), red
- BRITE Toronto (BTr), red

Principal Investigators

Fields

2018-05-16

- 01-Ori-I-2013 (released)
- 02-Cen-I-2014 (released)
- 03-Sgr-I-2014 (released)
- 04-Cyg-I-2014 (released)
- 05-Per-I-2014 (released)
- 06-Ori-II-2014 (released)
 07-VelPup-I-2014 (released)
- 07-VeiPup-I-2014 (released)
 08-VeiPic-I-2015 (released)
- 09-Sco-I-2015 (released)
- 10-Cyg-II-2015 (released)
- = 11-CasCep-I-2015 (released)
- 12-CMaPup-I-2015 (released)
- 13-Ori-III-2015 (released)
- 14-VelPup-II-2015 (released)
 15. Ore Open L 2015 (released)
- 15-CruCar-I-2016 (released)
 16-Sgr-II-2016 (released)
- T0-5gi-li-2010 (release

http://brite.craq-astro.ca/doku.php

Perseus I
 Observational Details
 Targets

Recent changes Media Manag

Et Regi

Field ID: 05-Per-I-2014

Perseus I

Observational Details

Coordinates: RA[hms] = 3:27:00, Dec[""] = +37:06:00 Observed: September 2nd, 2014 - February 18th, 2014 Status: Released Satellites: UBr, BAb

Targets

#	HD	Name	٧	Sp.Type	Contact PI	TNDP ¹⁾	Data avail. ²⁾
1	16908	35 Ari	4.66	B3 V	Pigulski	616	la public
2	17573	41 Ari	3.63	B8 Vn	Pigulski	24914	la public
з	17584	16 Per	4.23	F2 III	Zwintz	75839	le public
4	17709	17 Per	4.53	K5 III	Kallinger	10164	le public
5	18296	21 (LT) Per	5.11	B9pSi	Lüftinger	10232	le public

FITS and lightcurves from BRITE

① A https://brite.camk.edu.pl/pub/index.html

.... 🔽 ☆ Q. Szukai

BRITE public data archive

DATA ARCHIVE BRITE-CONSTELLATION

BRITE WIKI

BRITE

Public lightcurve archive Public fits archive Full Frame Image **BRITE-Constellation BRITE Wiki** Data release desciption BRITE FullFrameImage Catalogue.xlsx

Data archive

BRITE (BRIght Target Explorer) Constellation is a space astronomy mission to collect high-quality, time-dependent, dual-filter, optical photometry of bright stars with a set of nanosatellites, operated simultaneously by an international team of scientists and engineers. The scientific strength of BRITE Constellation is the ability to monitor at high photometric precision many of the apparently brightest stars in the night sky with sampling comparable to a BRITE nanosatellite orbital period (~100 minutes) for months or even years.

Researchers are requested to include the following acknowledgement in any publication that makes use of data retrieved from this database: "Based on data collected by the BRITE Constellation satellite mission, designed. built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNITP MNISW), and National Science Centre (NCN) "

Search for names. Star Field DataRelease Lightcurve HD3901 11-CasCep-I-2015 R4 HD3901 11-CasCep-I-2015 R4.zip HD4614 11-CasCep-I-2015 R4 HD4614 11-CasCep-I-2015 R4.zip

FITS and lightcurves from BRITE

BRITE public data archive

DATA ARCHIVE

BRITE-CONSTELLATION

BRITE WIKI

BRITE

Public lightcurve archive 01 Orion I 02 Centaurus I 04 Cygnus I 05 Perseus I 05-Per-I-2014_R2 05-Per-I-2014_R2_chop 06 Orion II 07 Vela/Puppis I 08 Vela/Pictoris I 09 Scorpius I 10 Cygnus II 11 Cassiopeia/Cepheus I 21 Cetus/Eridanus I Public fits archive

BRITE-Constellation BRITE Wiki Data release desciption BRITE_FullFrameImage_Catalogue.xlsx

Data archive

https://brite.camk.edu.pl/pub/index.html

BRITE (BRIght Target Explorer) Constellation is a space astronomy mission to collect high-quality, time-dependent, dual-filter, optical photometry of bright stars with a set of nanosatellites, operated simultaneously by an international team of scientists and engineers. The scientific strength of BRITE Constellation is the ability to monitor at high photometric precision many of the apparently brightest stars in the night sky with sampling comparable to a BRITE nanosatellite orbital period (~100 minutes) for months or even years.

Researchers are requested to include the following acknowledgement in any publication that makes use of data retrieved from this database:

"Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNITP MNISW), and National Science Centre (NCN)."

Search for names.

Star	Field_DataRelease	Lightcurve
HD3901	11-CasCep-I-2015 R4	HD3901 11-CasCep-I-2015 R4.zip
FITS and lightcurves from BRITE

BRITE public data archive

DATA ARCHIVE BRITE-CONSTELLATION

BRITE WIKI

BRITE

Public lightcurve archive BRITE-Constellation BRITE Wiki Data release desciption

Data realease description

The release notes for 22-Ori-IV-2016_R5 The Quality Check Team (QCT) release notes: 22-Orion-V-2016_Release_Notes.pdf

The release notes for 21-CetEri-I-2016_R5

The Quality Check Team (QCT) release notes: 21-CetEri-I-2016_Release_Notes.pdf

The release notes for 20-AurPer-I-2016_R5

The Quality Check Team (QCT) release notes: 20-AurPer-I-2016_Release_Notes.pdf

The release notes for 19-Cas-I-2016_R5

The Quality Check Team (QCT) release notes: 19-Cas-I-2016_Release_Notes.pdf

RELEASE 5 DATA

The latest reduction of Cru/Car field (the Release R5) is now available. The release 5 columns description is here: <u>DR5-descr.pdf</u>

DELEASE / DATA

FITS and lightcurves from BRITE

(i) 🔒 https://brite.camk.edu.pl/pub/index.html

🚥 🔽 🏠 🔍 Szukaj

BRITE public data archive

DATA ARCHIVE BRITE-CONSTELLATION BRITE WIKI

BRITE

Public lightcurve archive Public fits archive Full Frame Image BAb - BRITE Austria (blue filter) UBr - UniBRITE (red filter) BLb - BRITE Lem (blue filter) BTr - BRITE Toronto (red filter) BHr - BRITE Heweliusz (red filter) BHr-20140902-14b.fits BHr-20141009-14b.fits BHr-20150421-14b.fits BHr-20150528-cbm.fits BHr-20151023-cbm.fits BHr-20160213-cbm.fits BHr-20160425-cbm.fits BHr-20160615-cbm.fits BHr-20161001-cbm.fits BHr-20170105-cbm.fits BHr-20170126-cbm.fits BHr-20170921-14b.fits All - zip BRITE-Constellation BRITE Wiki Data release desciption BRITE FullFrameImage Catalogue.xlsx

Data archive

BRITE (BRIght Target Explorer) Constellation is a space astronomy mission to collect high-quality, time-dependent, dual-filter, optical photometry of bright stars with a set of nanosatellikes, operated simultaneously by an international team of accentists and engineers. The scientific strength of BRITE Constellation is the ability to monitor at high photometric precision many of the apparently brightest stars in the night sky with sampling comparable to a BRITE nanosatellike orbital period (~100 minutes) for months or even years.

Researchers are requested to include the following acknowledgement in any publication that makes use of data retrieved from this database: "Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNITP MNISW), and National Science Centre (INCN)."

Search for names..

Star	Field_DataRelease	Lightcurve
HD3901	11-CasCep-I-2015_R4	HD3901_11-CasCep-I-2015_R4.zip
HD4614	11-CasCep-I-2015_R4	HD4614_11-CasCep-I-2015_R4.zip

List of BRITE & BRITE-related publications

- http://brite.craq-astro.ca/doku.php?id=brite_science
- Last updated: April 6, 2018 (141 publication)

Type II

Epsilon Persei and Epsilon Centauri as supernowa type II progenitor

Appendix

Chopping = "nodding"

F:\temp\WykladPoniedzialkowy\animacja_epsper\epsper

LASR-Guided Stellar Photometric Variability Subtraction: TheLinear Algorithm For Significance Reduction

https://arxiv.org/pdf/1804.03653.pdf

that stellar variability in high mass stars

the technique of "prewhitening" servesas the traditional method of asteroseismic analysis

high-mass stars often rotate rapidly, inducing an oblateshape and a pole-to-equator luminosity gradient across the stel-lar surface (Barnes 2009; Barnes et al. 2011; Ahlers et al. 2015; Ahlers 2016).

Techniquesfor analyzing non-sinusoidal or non-periodic signals in the lightcurves such as the autocorrelation function (McQuillan et al.2014) and Gaussian proces et al. 2016) producestrong results when applied to such stars.

dis-play more stellar variability than the Sun

high-massstars behave quite differently. At~6250K and hotter, stars invertto become radiative rather than convective at their surface (Winnet al. 2010). These stars have we or nonexistent sunspots, and commonly rotate rapidly as a mostly-rigid body throughout their lifetimes. High-mass stars in the classical instability strip pulsate with radial and nonradial modes at high amplitudes. Therefore, analysis of stellar variability in the light curves of high-massstars comes with a unique set of challenges and must be handled differently than variability in low-mass stars.

2018-05-16

magnetic fields may have built up throughdynamo processes (similar to that generating the Earth or the sun magneticfields)

All stars are rotating (the rotation period of the sun is about 27 d)

The compactification of the star then implies faster rotation

The rotational energy of a star can be estimated simply as $Erot=I\Omega 2/2 = 2I\pi 2P-2$ where Is the moment of inertia which, for a homogeneous sphere of mass Mand radius Risl= 2MR2/5.

Źródło: https://arxiv.org/pdf/1804.03451.pdf

2018-05-16