The PennState-Toruń Planet Search - project status and recent results

Paweł Zieliński

Toruń Centre for Astronomy Nicolaus Copernicus University Toruń

Toruń Centre for Astronomy

Toruń Centre for Astronomy

TCfA is divided on two departments:

Astronomy and Astrophysics

(variable stars, planetary nebulae, extrasolar planets, ISM, celestial mechanics, MHD)

Radioastronomy

(pulsars, masers, AGNs, cosmology)

The PennState–Toruń Planet Search

Pennsylvania State University & Nicolaus Copernicus University

PIs: Andrzej Niedzielski & Aleksander Wolszczan

• Main goals of PTPS:

- a) Search for planets around intermediate-mass, evolved stars by using radial velocity (RV) method
- b) Study of star planet interactions
- c) Study of evolution of planetary systems with aging stars
- **BONUS** lots of stellar astrophysics: characterization of ~1000 stars (with and without planets)

The PennState–Toruń Planet Search

Pennsylvania State University & Nicolaus Copernicus University PIs: Andrzej Niedzielski & Aleksander Wolszczan

• Main goals of PTPS:

- a) Search for planets around intermediate-mass, evolved stars by using radial velocity (RV) method
- b) Study of star planet interactions
- c) Study of evolution of planetary systems with aging stars
- **BONUS** lots of stellar astrophysics: characterization of ~1000 stars (with and without planets)

- My research field in PTPS:
- a) Determination and analysis of physical parameters of ~350 stars
- b) Confirmation of evolutionary status of ~350 stars
- c) Parameters determination for planet-hosting stars => parameters for planets
- d) Verification of reality and consistency of parameters determinations for late-type stars

Various methods of parameters estimation

- **Direct methods** (e.g. interferometry, lunar ocultations)
- **Photometric and spectrophotometric methods** (e.g. photometric surveys, empirical calibrations, spectral energy distribution, infrared flux method)
- **Spectroscopic methods** (e.g. analysis of Balmer lines, Balmer jump, depth ratio of metalic lines, equivalenth widths, modelling of synthetic spectrum)
- Asteroseismic methods (e.g. analysis of solar-like oscillations)

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4 \qquad g = \frac{GM}{R^2}$$

• The choice of optimal method for parameters determination depends on:

- 1. accuracy required for stellar parameters
- 2. available resources (catalogs or literature data)
- 3. type of observational material available for the stars
- 4. number of studied targets

Observational material

- 9.2 m Hobby–Eberly Telescope (McDonald Observatory)
- High Resolution Spectrograph (R = 60000)
- S/N ~ 200-500 (for spectra without iodine-cell)
- spectral range: 407–592 nm and 602–784 nm

Niedzielski & Wolszczan 2008, IAUS, 249, 43

Grevesse & Sauval 1999, A&A, 347, 348 Meylan et al. 1993, ApJS, 85, 163 Kurucz et al. 1984, Solar Flux Atlas from 296 to 1300 nm (NSO)

 \rightarrow **296** neutral (**Fe I**) and ionized (**Fe II**) iron lines

(Fe II) iron lines

→ selection of iron lines based on well-known compilation of laboratory data lists

Equivalenth Widths as input data

Pancino)

Atmospheric parameters of stars

• Atmospheric model is characterized by:

- effective temperature \mathbf{T}_{eff}
- surface gravity **log** *g*
- microturbulence velocity \mathbf{v}_t
- metallicity [Fe/H]

• Computational method:

- \rightarrow numerical code **TGVIT** (Takeda et al. 2002, 2005)
- → Kurucz models of stellar atmospheres (1-D, plane-parallel) (Kurucz, R.L. 1993, CD-ROM 13, ATLAS9 stellar atmosphere program and 2 km/s grid)
- \rightarrow LTE assumptions:

excitation equilibrium ionization equilbrium matching the curve of growth

A(Fe) vs. χ A(Fe I) = A(Fe II) A(Fe) vs. EWs

Takeda et al. 2005a, PASJ, 57, 27 Takeda et al. 2005b, PASJ, 57, 109

Atmospheric parameters of stars

 \rightarrow number of lines taken to the analysis is on average **190** (Fe I) and **15** (Fe II)

Microturbulence velocity: $ov_t = 0$

 $\sigma v_t = 0.08 \text{ kms}^{-1}$

Zieliński et al. 2012, A&A, 547, A91

Integral parameters of stars

- Based on Hipparcos / Tycho parallaxes and V, B-V
- Luminosity derived directly from parallaxes for 57 stars, preliminary estimations for the rest
- Comparing the position of each star on HR diagram with evolutionary tracks (*Girardi, L., et al. 2000, A&AS, 141,37; Salasnich, B., et al. 2000, A&A, 361, 1023*)
 - \rightarrow determination of stellar mass, final luminosity, radius and age

for n = 3, i.e.
$$[\log L/L_{sun}, T_{eff}, \log g]$$

final fit of log L/L_{sun} , estimation of M/M_{sun} , Age calculation (from the formula) of R/R_{sun}

HR diagram for RGC sample

10.0

Kinematics and Galactic distribution

Paweł Zieliński, TCfA

Clump giants

Criteria of clump giants selection:

4700 K $\leq \mathbf{T}_{eff} \leq 5100$ K 1,25 $\leq \log L/L_{sun} \leq 2,10$

Tautvaisiene & Puzeras 2009, IAUS 254, 75 Jimenez et al. 1998, MNRAS 299, 515

- 126 stars (38%) fulfill the criteria
- But high dispersion in absolute magnitudes!To confirm the clump giants membership chemical analysis is necessary

Summary of my PhD results

- Fundamental parameters and kinematical properties for 348 stars
- Spectroscopic analysis reveals that:
 - ✓ 5 stars from RGC sample classified as giants are in fact dwarfs (log g ≥ 4)
 - ✓ 4 stars classified as dwarfs are in fact K giants
 - ✓ 126 stars from the sample are most likely clump giants
- Kinematical analysis reveals that:
 - ✓ 76% of stars are members of thin Galactic disk
 - ✓ 22% of stars are members of thick disk
 - ✓ 2% of stars are members of halo population

 $T_{eff} \sim 4055 - 6239 \text{ K}$ (mean value 4736 K)

 $\log g \sim 1.39 - 4.78$ (mean value 2.66)

 $\log L/L_{sun} \sim -0.68 - 2.86$ (mean value 1.6)

 $M\sim$ 0.6 – 3.4 $M_{\rm sun}~(>2~M_{\rm sun}$ for 63 stars)

$$R \sim 0.6 - 52.1 R_{\rm sun}$$
 (mostly 9-11 $R_{\rm sun}$)

 $[Fe/H] \sim -1.0 - +0.45$ (mean value -0.15)

Age ~ 3 – 5 Gyr

→ first spectroscopic study of red giants, such faint and distant from the Sun!

Summary of my PhD results

 Physical parameters of stars are crucial for masses and orbital parameters of their companions
=> until today there are **17 stars** from PTPS with planetary or brown dwarf candidates

 RV survey reveals that ~30 % of PTPS stars are suspected to host planetary-mass companions

More PTPS results

 Promising results of statistical correlations studies => planet occurrence vs. stellar metallicity (*Zieliński et al. 2010, EAS Publ. Series 42, 201*)

Dwarfs with planets tend to be more metal abundant than those without planets (Santos et al. 2001, 2004, Fischer & Valenti 2005)

$|\Delta[{\rm Fe}/{\rm H}]| = 0.13$

More PTPS results

Thank you for attention!