Echelle spectroscopy with a small telescope

Theodor Pribulla

Principal parameters of a spectrograph

* Spectral resolution R
* Optical efficiency=throughput
* Useful spectral range
* RV stability

Design

$$
R=\frac{\lambda}{\Delta \lambda}=\frac{c}{\Delta \nu}
$$

$$
R=\frac{f_{\text {coll }}}{w} \frac{n^{2}}{d^{2}}\left(\frac{\sin \alpha+\sin \beta}{\cos \alpha}\right)
$$

$$
R=\frac{W}{s D} \frac{n^{2}}{d^{2}}\left(\frac{\sin \alpha+\sin \beta}{\cos \alpha}\right)
$$

* fiber-fed, slit-mounted
* long-slit, echelle, multi-object/fiber
* single-channel, double channel, white-light
* image slicers
* Littrow configuration: angle of incidence equals to angle of diffraction

Echelle spectroscopy

* long-slit spectrographs: usually first or second interference order used, low order overlap
* echelle spectrographs: high orders, total order overlap, cross-dispersers necessary
* High resolution: high order (n), or/and small distance between grooves (d)
* blaze angle: improvement of efficiency to facet normal direction (=wavelength)

$$
\sin \alpha+\sin \beta=\frac{n \lambda}{d}
$$

Echelle
 order distribution

* Blaze function = distribution of maximum intensity
* Order overlap, free spectral range

$$
I(\beta)=\left[\frac{\sin (\pi b \cos \phi[\sin (\alpha-\phi)+\sin (\beta-\phi)] \lambda}{(\pi b \cos \phi[\sin (\alpha-\phi)+\sin (\beta-\phi)] / \lambda}\right]^{2}
$$

eShel @G1 60/750cm Zeiss

eShel spectrograph design \& parameters

* Littrow design with f/5, prism crossdisperser, 125 mm collimator
* fiber-fed
* R2 echelle grating, 79 grooves/mm
* spectral resolution $R=11000$
* useful spectral range: 24 orders covering 4100-7600 Å
* Canon f/1.8 lens: chromatic aberration
* 50 micron object fiber, 200 micron calibration fiber
* calibration Iamps: ThAr, Tungsten, blue LED
* CCD detector: ATIK 460EX camera, ron $=5.1$ e-, gain 0.26, 2749×2199 pixels, 4.54 um pixel
* f/6 FIGU, WATEC 120n guiding camera

EShel and FIGU optical layout

Echelle orders layout

ThAr spectrum

Reduction basics with IRAF

Reduction steps

* overscan, dark, flatfield correction
* combining multiple exposure spectra (faint objects), ccr cleaning
* cosmic hit cleaning (W. Pych code)
* tracing and extracting echelle orders with background fit -> 2D spectra
* ThAr re-identification, reference selection and weighting
* reference spectra and wavelength solution of 2D spectra
* SNR 2D spectra
* continuum normalization of 2D spectra
* order combining to 1D spectra
* spectrophotometry of 1D spectra

Marking apertures (=interference order) \& defining background

Tracing aperture shape

ThAr identification and wavelength solution

Aperture extraction and continuum normalization

Combining spectral orders: from 2D to 1D spectra

First results with eShel @G1

Resolving power

* Depends on focusing the Canon lens
* $R>10000$ for $4600 \AA<\lambda<6700 \AA$

S/N ratio @ 60cm of G1

* brightness and SED of the object
* Exposure time
* telescope diameter
* telescope and spectrograph throughput
* CCD QE
* spectral resolution
* seeing and angular diameter of fiber
* atmospheric extinction (airmass)

HIP7277: $B=8.48, V=7.96$, $F 8$ spectral type, 900 sec exposure on December 5, 2014: $S / N=60(6600 \AA), S / N=47(5200 \AA)$ and $S / N=20(4500 \AA)$
TYC 1877-1060-1: $B=10.04, V=9.75, B 5$ spectral type, 3×900 sec exposure on December 4, 2014: $\mathrm{S} / \mathrm{N}=45$ (6600 \AA), $\mathrm{S} / \mathrm{N}=45$ (5200 \AA) and $\mathrm{S} / \mathrm{N}=21$ ($4500 \AA$)

Spectrophotometric calibration

* Calibration to fluxes, e.g. erg $/ \mathrm{s} / \mathrm{m}^{2} / \AA$
* Complicated by (i) fiber opening/slit loses, (ii) chromatic atm. refraction (for low X), (iii) atmospheric extinction, $k=k(\lambda)$ (iv) blaze function (v) order overlap
* Multi-colour photometry improves the fluxes

Spectrophotometric calibration vs. VR

Pulsating stars

* Test observations of: RR Lyr ($\mathrm{V}=7.06$, sp . type A8-F7)
* Possibly non-radial pulsations of δ Sct star if $v \sin i l a r g e$

NOAD/IRAF V2.15.1a pribullagdeneb.ta3.sk Thu 10:26:34 12-Jun-2014
Separation step $=0.35$
RR Lyr

Binary stars

* Test observations of: W UMa (contact EB, V=7.75), HD192169 (newlydiscovered detached EB, V=9.03, F8V), V501 Aur (T Tau, non-eclipsing, $\mathrm{V}=10.88, \mathrm{K0}$), PPM47103 (newly-discovered detached EB, V=9.75, B5)
* W UMa, HD192169 and V501 Aur analyzed by the BF technique, spectrum of HD128167 (V=4.47, F4V, v $\sin i=7.3 \mathrm{~km} / \mathrm{s}$) as the template, BFs extracted from 4900-5985 A range with $10 \mathrm{~km} / \mathrm{s}$ step

Exoplanets

* RV precision depends on (i) signal-to-noise ratio SNR (ii) projected rotational velocity v sin i, (iii) spectral resolution R, (iv) wavelength coverage B, (v) line density f as (Hatzes, 2010):

$$
\sigma=\operatorname{const} \frac{v \sin i}{R^{3 / 2} B^{1 / 2} f^{1 / 2} S N R}
$$

* Test observations transiting system HAT-P-2 (V=8.69, sp. type F8V, K = 984 $\mathrm{m} / \mathrm{s}, \mathrm{P}=5.633$ days), non-transiting system 七 Boo (V=4.49, sp. type F6IV+M2, K $=461 \mathrm{~m} / \mathrm{s}, \mathrm{P}=3.312$ days)
* Instrumental effects: (i) frequency of ThAr spectra (ii) number of ThAr lines for wavelength calibration (iii) variations in temperature and pressure (iv) instability of ThAr line ratios
* Telluric features: RV precision improvement

RV variability of τ Boo (Gaussian fit to BFs), data from 10 nights, March 13 to June $6,2014, \mathrm{rms}=78 \mathrm{~m} / \mathrm{s}, \mathrm{K}=461.1 \mathrm{~m} / \mathrm{s}, \mathrm{P}=3.312$ days

RV variability of HAT-P-2 (Gaussian fit to BFs), data from 5 nights, March 14 to July 3,2014 , rms $=326 \mathrm{~m} / \mathrm{s}, \mathrm{K}=983.9 \mathrm{~m} / \mathrm{s}, \mathrm{P}=5.633$ days

Symbiotic stars \& novae

* Easy to record emission lines but risk of saturation in $\mathrm{H} \alpha$, spectrophotometry

CH Cyg, H α

AG Dra, Raman-scattered line, $6826 \AA$

CH Cyg

Objects to observe with eShel @60cm telescope

* Novae in the "fireball" stage, up to V=10
* Symbiotic stars, emission lines can be well recorded even for $\mathrm{V}=12$ objects
* Eclipsing binaries: limited to bright and long-period orbital systems, minimum phase resolution is 2%
* Exoplanet host stars with RV amplitudes > 200-300 m/s - needs better thermal stability
* Whatever brighter than $\mathrm{V}=10.5$ mag

Observation planning basics \& standards

* Faint objects: multiple exposures
* Exposure time $\leq 900 \mathrm{sec}$ (cosmic hits accumulation)
* Precise RVs $==>$ frequent ThAr, sufficient intensity of ThAr
* Flatfields (tungsten + LED) necessary to define orders
* Perfect guiding
* seeing depends on $X==>$ observe close to meridian

Standards stars

* Telluric templates: correction of telluric features (mostly $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$) red of Na I D doublet: bright, early-type, rapid rotators, close to the object
* IAU RV standards: checking the zero point of the RV system: bright, single stars, slow rotators
* Spectrophotometric standards: to determine fluxes: bright stars, few lines (e.g., DA stars, early-type stars)

Thanks for your attention!

