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Abstract —We discuss a slightly modified Abelian Higgs model of sunspots in which the potential
term V(®) has a ‘Sine-Gordon'-like form, V(®) = ~(a/f?)[1 ~ sin f(®P*)¥]. The model accounts
not only for the observed diversity of the absolute dimensions of sunspots, but is also compatible
with a more-or-less constant value of their penumbra-to-umbra radius ratios provided the parameter
K is close to unity. Copyright © 1996 Elsevier Science Ltd.

The Abelian Higgs (AH) model of a sunspot [1, 2] is, to our knowledge, the only viable
model where the appearance of two different length scales, i.e. that of the umbra r, and
that of the penumbra r,, follows from first principles. And it is the ratio of the two,
O =r,/r,, that seems to play a crucial role in sunspot physics. For example, the
dependence of the magnitude of magnetic field strength in the centers of sunspots on the
number of magnetic flux quanta that the latter carry is particularly sensitive to the value of
O [3, 4]. From observations it follows that although there is a relatively large span in
absolute dimensions of spots, ranging from about 2000 km to 50000 km (see e.g. [S]), their
relative dimensions U are almost constant, with 2.0<G <2.5 (see e.g. [6] and the
references therein). Hence, it was of great importance to notice, when searching for the
physical meaning of the Higgs field operating on the Sun, that in order to accommodate
the above observational constraints into our AH model the assumption of constancy of the
Higgs vacuum amplitude had to be relaxed [7]. The aim of the present contribution is to
examine further this question within a slightly modified version of the AH model, which is
characterized by a discrete, infinite set of vacuum values of the Higgs field amplitude.

The model discussed in what follows is represented by the Lagrangian density of the
form

*
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where g, x, a(>0), and § are real-valued phenomenological constants, and where the
remaining symbols and notations are identical to those of [2].

In order to find explicit expressions for the length scales of this model we start with the
equations of motion following from eqn (1):
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(0 - FPPA, = —lg(cp*g _92?® ) (3,A° = 0) )
2 ox® ax’
and
(D — 2igA® + g2 A, A" + %cos [ﬁ(qxp*)*](cpcp*)“)cp =0, (3)
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where 0= —7’3°/3x”3x”. As the next step, one takes into account that any physically
plausible solution to these equations must meet the finite energy requirement. This
necessitates that each term on the right-hand side of eqn (1) vanishes at spatial infinity
(r — ) which in the case of the latter is equivalent to the condition

BOD*)* = ¢ + %(25 +1), &-0, (4)
where s is an even integer. Further, putting
T 1/’21( T 1/2K
D=y+|—02s+1 , @®*=yr+ | —Q2s+1 , 5)
5 ﬁ( ) Z b [3( ) (
one finds, to the lowest order in y(x*),
2k-1)/2x
£= KBGO+ )| 550+ D) . ro ), ©)

If one now substitutes eqns (4)—(6) into eqns (2) and (3), and keeps in each the leading
terms only (remembering that each A, vanishes asymptotically, too), one arrives — after a
little lengthy but straightforward algebra - at the following asymptotic forms of the
equations of motion:

1k . 1/2x _
(D -l I@s+1) )Ao = 1ol T s+ 1) M (7
2B 27128 ox°
and
- 2x—1)/x
(D — 2ax? ﬁ(Zs +1) )(x + x*) = 0. (8)
The last step to be made is to rewrite the last two equations as
(@ = LA, = O(x X, ©
and
@ - L)+ 2 =0, (10)

in order to make explicitly visible the two scales of the model, namely, the penetration
depth

1/2¢
— m -
lem = 1/g %(25 +1) =r, (11)
which characterizes the variations in electromagnetic effects, and the coherence length
. (2x—1)/2x
e = 1)V (Qa)x Eﬁ(zs + 1) =7, (12)

representing the characteristic distance at which the Higgs field reduces to its vacuum value
{eqn (5) with y and x* set equal to zero). Following what one did in the case of the
ordinary AH model [1, 2], one has identified the former (resp. latter) with the radius of
the penumbra (resp. umbra). Hence, the penumbra-to-umbra radius ratio is given by

(x—1yk

0= & = -le_m = —.-.\/(ZCY)K (13)
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This is a remarkable formula for it says that O is an ‘effectively’ constant quantity only if
k= 1; any other choice of k results in the s-dependence of G which would imply that

T @25+ 1
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sunspots belonging to different Higgs vacua, i.e. the vacua characterized by distinct values
of |s|, would have different values for O, in contradiction with observations. Indeed, this
observational aspect of the structure of a sunspot was examined thoroughly by Nicholson
[8] and Waldmeier [9], as well as by many others (see e.g. [10]), and they were all unable
to find any definite dependence of G on penumbral radii of spots. In a more recent work,
Brandt et al. [11] plotted log A, as a function of log A, where A, (resp. A,) stands for the
total area of umbra (resp. umbra and penumbra), and found the following linear relation

logA, = —(0.79 £ 0.35) + (1.10 £ 0.17)log A,. (14)
On the other hand, combining equations (11) and (12) yields
2k—1
8 2x—1
r,=-—=2—-r""", 15
Veax ' )
which in logarithmic form reads
g2K—1
logr, =log—2—— + 2k — 1)logr (16)
2TV o ¢
or, taking into account the fact that r, = \/(A,/7) and rp= vV (A/m),
2x—1
log A, = [2log—8—— + (x — Dlogn| + 2K — 1)log A4, (17)
V(2a)x

Comparing the last equation with equation (14) one sees that the model nicely reproduces
the findings of [11] for x = 1.05 = 0.09.

In conclusion, let us briefly focus our attention on the question of absolute dimensions of
sunspots. The following two interesting facts stem from equations (11) and (12): (i) there
exists only an upper boundary on the distribution of spot sizes (corresponding to s = 0),
and (ii) this distribution possesses a discrete-valued character (s being an (even) integer).
The former fact, however, can be handled at a qualitative level only because g and § are
as yet unspecified phenomenological constants. On the other hand, there exists some
observational evidence speaking in favour of the ‘quantization’ of spot dimensions: as early
as some twenty years ago Bumba et al. [12] noticed that “‘the dimensions of the studied
sunspots did not continuously fill in the whole interval of the dimensions between the
smallest and biggest spots, but that they were grouped around certain values’”. However, in
order to make a definite conclusion about whether spots really show the ‘quantized’ nature
of their sizes one will have to wait until more representative data are available.
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