Dynamics of the DOT/LaPalma G-band bright points

M. Bodnárová', D. Utz ${ }^{23}$, J. Rybák ${ }^{1}$

${ }^{1}$ Astronomical Institute of Slovak Academy of Sciences, Slovakia
${ }^{2}$ Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
${ }^{3}$ IGAM/Institute of Physics, University of Graz, Austria
3rd International workshop on small scale solar and stellar magnetic fields

$$
\text { April } 3-5,2013
$$

Bairish Kölldorf, Austria

Introduction - G-band bright points

* are revealed if the sun is imagined in the G-band (spectral range at 430 nm dominated by electronic transitions of the CH-molecule) at a sufficiently high resolution as isolated brightenings
* are interpreted as small-scale magnetic field concentrations that are embedded in the convective flow field of the solar photosphere
* as manifestations of small-scale magnetic fields they become important for the understanding of the coronal heating process and the variability of the solar irradiance

Data

* speckle reconstructed images of the quiet solar photosphere in G-band (430 nm)
- Dutch Open Telescope (DOT) 19.10. 2005 (09:55-11:05 UT, 142 images, cadence 30s)
* size: 1112 pixel $\times 818$ pixel
* FOV: 79×58 arcsec
* sampling: 0.071 arcsec/pixels

Data

a sample G-band image of the quiet solar photosphere (FOV: 78 by 59 arcsec) with the indicated
locations of the tracked GBPs

Identification and tracking of GBPs

* GBPs were identified and tracked on G-band images using the algorithm developed by Utz et al. (A\&A 498, 289-293, 2009)
* 26238 GBP identifications of 4017 tracked GBPs on all 142 images of the data set
* statistical properties of the tracked GBPs: average radius ($244.9 \pm 37.62 \mathrm{~km}$) average lifetime ($3.0 \pm 2.72 \mathrm{~min}$) median of velocity ($1.3 \mathrm{~km} / \mathrm{s}$)
example of the G-band bright point identification
using the Utz's algorithm

Dynamics of GBPs

Aim: to present a compact study of various traditional and new parameters describing dynamics of tracked GBPs

Studied parameters:

* effective velocity v
* change in effective velocity $d v / d t$
* change in direction angle $\Delta \varphi$
* centrifugal acceleration $v d \varphi / d t$
* rate of motion d / r
* time lag between recurrence

Effective velocity

- range: 0-6 km/s
- median value: $1.384 \mathrm{~km} / \mathrm{s}$
- most probable value: $0.9 \mathrm{~km} / \mathrm{s}$
* only 10% are higher than $3 \mathrm{~km} / \mathrm{s}$

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

- sample Rayleigh distribution ($\sigma=1$)
- deviation increased numerosity velocities in the range:
$2-4 \mathrm{~km} / \mathrm{s}$

Change in effective velocity

* positive (acceleration) and negative (deceleration) values in range: $(-0.2)-(0.2) \mathrm{km} / \mathrm{s}^{2}$
* 77.8% values in range: $(-0.05)-(0.05) \mathrm{km} / \mathrm{s}^{2}$
$\rightarrow 0.05 \mathrm{~km} / \mathrm{s}^{2} \rightarrow \quad 500$
- Gaussian FWHM = 0.074 km/s ${ }^{2}$

Change in direction angle

* change in direction of motion of GBPs $\Delta \varphi=\varphi_{2}\left(t_{2}\right)-\varphi_{1}\left(t_{1}\right)$ between two successive time steps (30s) $t_{1}, t_{2}\left(t_{2}=t_{1}+30 \mathrm{~s}\right)$
* each possible value has nonzero probability
- not Gaussian as a whole
- 54.5\% values (from -1 up to 1 rad) Gaussian fit: FWHM $=1.93$ 畐 $\mathrm{km} / \mathrm{s}^{2}$
- ratio of retaining direction to changing essentially: 3.08

Centrifugal acceleration

* is a relevant quantity when considering the generation of waves in magnetic flux tubes
* exponential distribution \rightarrow logarithmic scale
- slightly asymmetric with a pronounced excess around $\sim 0.4 \mathrm{rad} \mathrm{km} / \mathrm{s}^{2}$

Rate of motion (1)

- location of GBP = location of its barycenter of brightness
* the observed motion of GBPs is minimal - distances made during existence are mostly up to ~ 1 arcsec
* mean area of a GBP: ~2.016 $\operatorname{arcsec}^{2}$
* m indicates if the GBP at the end of its existence left the circle given by the size of the GBP at its fist identification
* \boldsymbol{d} is the distance between the first and the last barycenter
- r is the radius of the initial circle of existence)

$$
m=\frac{d}{r}
$$

Rate of motion (2)

* $\sim 45 \%$ GBPs: $\mathrm{m}<1 \rightarrow$ within the circle of the first identification
$* \sim 55 \%$ GBPs: $m>1 \rightarrow$ outside of the circle of the first identification
* ~18.5\% have $2<m<4 \rightarrow$ significant movement, which cannot be accounted to the method of definition of the location of GBPs

Rate of motion (3)

a sample G-band image of the quiet solar photosphere (FOV: 78 by 59 arcsec) with the indicated
locations of the tracked GBPs with $\mathbf{m}<1$ and with $\Omega>$?

Time lag between recurrence of GBPs

* the frequency of recurrence of different GBPs on the same locations - areas of a given size
* studied areas: 0.35, 0.49, 0.63, 0.78 and 0.92 arcsec
* small time lags (up to $\sim 4 \mathrm{~min}$) \rightarrow higher densities
- most numerous: ~2-3 min
* time lags longer than ~10 min are less frequent

Summary

* effective velocity: most probable value: $\sim 0.9 \mathrm{~km} / \mathrm{s}$; deviation from the Rayleigh function ($\sigma=1.0$) in the range $\sim 2-4 \mathrm{~km} / \mathrm{s}$
* change in effective velocity: Gaussian shape (FWHM $=0.074$ $\mathrm{km} / \mathrm{s}^{2}$)
* change in direction angle: non-Gaussian shape \rightarrow the central peak (54.5\% of values) has a Gaussian shape (FWHM = 1.93 rad)
- centrifugal acceleration - exponential distribution
* rate of motion: $\sim 45 \%$ of tracked GBPs \rightarrow displacement is smaller than their initial size; locations of GBPs with $\mathrm{m}<1$ and $m>2$ does not significantly differ
* time lag of recurrence of GBPs: most numerous are lasting ~23 min and lags up to $\sim 4 \mathrm{~min}$ are more numerous than longer lags

Conclusion

* our results for effective velocities, change in direction angle and centrifugal acceleration are acknowledging the results of previous authors
* we defined two new parameters: to help to estimate the real displacement of GBPs during their existence (rate of motion) and the frequency of their recurrence on the same locations (time lag between recurrence of GBPs)
* the observed movement of GBPs is within a small area along the intergranular lanes
* there is no difference in locations of stable and more vigorously moving GBPs
* numerous relatively short time lags indicate that GBPs tend to vanish and reoccur on their locations

Thank you for your attention!

