Magnetoacoustic waves propagating along a dense slab and Harris current sheet in the solar atmosphere

H. Mészárosová¹, M. Karlický¹ P. Jelínek^{2,1}, and J. Rybák³

¹Astronomical Institute, Academy of Sciences, Ondřejov, Czech Republic ²University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic ³Astronomical Institute, SAS, Tatranská Lomnica, Slovak Republic

ISTP, Irkutsk, Russia

OUTLINE

• Introduction:

* basic magnetoacoustic waves features

* basic features of the dense slab & Harris current sheet

• 2D MHD numerical simulations:

- * parameters of the simulations
- * spatial and temporal analysis of waves
- * example of observed magnetoacoustic waves
- * mutual interactions between two waves

• Results and Conclusions

Impulsively Generated Propagating Magnetoacoustic Waves

characteristic WAVELET TADPOLE signature where narrow spectrum tail precedes the broadband head

from Nakariakov et al., 2004, MNRAS

ISTP, Irkutsk, Russia

Impulsively Generated Magnetoacoustic Waves

DENSE SLAB

\approx simulation of a coronal loop

waves propagate along a loop

HARRIS CURRENT SHEET

magnetic reconnection:

- 4 magnetic domains at the figure center,
- field lines with plasma flow inward from above and below the separator, reconnect, and spring outward horizontally,
- CS perpendicular to the field lines at the figure center,
- Harris: magnetic field profile is given by

 $\mathbf{B} = B_0 tanh(x/L)e_z$

waves propagate along the CS

ISTP, Irkutsk, Russia

Impulsively Generated Waves:

2D MHD numerical simulations

numerical box: length = 200 Mm, width = 24 Mm uniform cell size: dx = dy = 80 km red strip = waveguide (slab/current sheet), w = half-width of waveguide, P = perturbation point, magnetic field configuration: green arrow = B_{slab} blue arrows = B_{CS} (current sheet) plasma dynamics described by full set of ideal time-dependent MHD equations time step $\Delta t = 0.044$ s

mass density ρ profile

magnetic field B_{slab} is parallel to the Xaxis and constant in the whole simulation region ($B_{slab} = 3.5 \times 10-3$ T) electron density $n_e = 10^{16}$ m⁻³

selected the parameters in/out of slab: mass density $\rho_{in} = 6.69 \times 10^{-11} \text{ kg m}^{-3}$ mass density $\rho_{out} = 6.08 \times 10^{-12} \text{ kg m}^{-3}$ temperature $T_{in} = 0.45 \text{ MK}$, $T_{out} = 5 \text{ MK}$

$$\varrho(X,Y) = \varrho_0 + (\varrho_{\text{slab}} - \varrho_0) \cdot \operatorname{sech}^2 \left\{ \left[\frac{(Y - Y_P)}{w} \right]^{\alpha} \right\}$$

power index α = 8 determines **the steepness of the profile** (Nakariakov & Roberts, SolPhys. 1995) Alfvén velocity $v_{A-in} = 0.39 \text{ Mm s}^{-1}$ $v_{A-out} = 1.28 \text{ Mm s}^{-1}$ sound velocity $c_{s-in} = 0.11 \text{ Mm s}^{-1}$ $c_{s-out} = 0.37 \text{ Mm s}^{-1}$

magnetic field *B* profile

$$\mathbf{B} = B_{\text{out}} \tanh\left[\frac{(Y - Y_P)}{w}\right] \hat{\mathbf{e}}_X$$

selected parameters in the center c, at Y = w and in/out of the current sheet:

magnetic field $B_{out} = 3.5 \times 10^{-3} \text{ T}$ mass density $\rho_c = 6.69 \times 10^{-11} \text{ kg m}^{-3}$ $\rho_w = 3.32 \times 10^{-11} \text{ kg m}^{-3}$ $\rho_{out} = 6.08 \times 10^{-12} \text{ kg m}^{-3}$ temperature = T = 5 MK

sound speed $c_s = 0.37$ Mm s⁻¹ Alfven velocity $v_{A-c} = 0$ $v_{A-w} = 0.40$ Mm s⁻¹ $v_{A-out} = 1.28$ Mm s⁻¹

Time evolution of the magnetoacoustic waves (mass density):

- **P** = initial perturbation
- **F** = fast wave train
- S = slow wave
- **I** = nonpropagating peak of entropy mode in situ of perturbation

Mészárosová et al., 2014, ApJ

Role of the waveguide half-width w [Mm] & distance from perturbation P [Mm]

Mészárosová et al., 2014, ApJ

ISTP, Irkutsk, Russia

Magnetoacoustic Waves: 2D MHD numerical simulations

Time series and their wavelet spectra corresponding to a mutual interaction between two fast waves in the dense slab

 \rightarrow superposition (temporary merger) of both waves

Magnetoacoustic Waves: 2D MHD numerical simulations

Dynamic spectrum of time series collected at selected points X = 0 - 200 Mm along the density slab (spatial step = 5 Mm)

- 1^{st} perturbation generated 5 s after starting time at point X = 70 Mm
 - \rightarrow fast waves F1 and F2

 2^{nd} perturbation generated 10 s after starting time at point X = 130 Mm

- \rightarrow fast waves F3 and F4
- Arrow 1: fastest spectral components of the fast wave F4 (velocity = 1.0 Mm/s)
- Arrow 2: slowest spectral components of the fast wave F4 (velocity = 0.35 Mm/s)
- Arrow 3: one of slow waves (velocity = 0.1 Mm/s)
- Arrow 4: nonpropagating peak of the entropy mode
- Arrow 5: waves F2 and F3 propagate toward the waveguide center (X = 100 Mm) and they interact at a time of 93 s

Mészárosová et al., 2014, ApJ

Our computed velocities agree with those theoretically predicted by Roberts et al. (1984) – for the initial values of the MHD simulation:

Alfvén velocity out of the dense slab $v_{A-out} = 1.28$ Mm/s should correspond to the fastest components of the fast wave train

Alfvén velocity in the dense slab $v_{A-in} = 0.39$ Mm/s should correspond to the slowest components of the fast wave train

sound velocity in the dense slab $c_{s-in} = 0.11$ Mm/s should correspond to the slow magnetoacoustic wave

results of the MHD simulations for a dense slab: fastest spectral components of the fast wave F4 (velocity = 1.0 Mm/s) slowest spectral components of the fast wave F4 (velocity = 0.35 Mm/s) slow waves (velocity = 0.1 Mm/s)

Mészárosová et al., 2014, ApJ

Magnetoacoustic Waves:

Observations

16.0 m 32.0 64.0 128.0 400 100 200 300 300.0 250.0 2479 MHz A 200.0 -te 150.0 100.0 3 15.0 32.0 64.0 128 300 400 200 500 350.0 2645 MHz 350.0 ₹ 250.0 200.0

radio dynamic spectrum, Ondřejov observatory 18 Aug 1998, 2.0 – 4.5 GHz, 8:18 – 8:23 UT

at all frequencies: wave period P = 94 s additional head structures \rightarrow waveguide \approx loop

about 4 GHz: shorter tadpole tail closer to perturbation

ISTP, Irkutsk, Russia

150.0

100.0

Conclusions:

- The dense slab and current sheet guide the fast waves in a similar way. They differ in guiding of the slow waves. The difference comes from the different magnetic fields and temperature structures of these waveguides.
- Each fast wave forms a wave train. The slow wave propagates as a single peak. We found a nonpropagating wave at the site of the initial perturbation in both types of the waveguide.
- For cases with the narrow waveguide (*w* = 0.5 Mm) the tadpole heads were suppressed. For waveguide half-width > 1 Mm there are additional structures of tadpole heads. In the dense slab case these additional structures were always delayed after the tadpole head maximum. The current sheet case is the opposite.
- mutual interactions of waves generated by two perturbations: Wavelet spectra of the fast waves depends on the evolution states of the wave trains of both waves at the time of their interaction.

Thank you for your attention!