# Possible chromospheric response to the dynamics of photospheric G-band bright points

M. Bodnárová, D. Utz, J. Rybák October 5. 2015

Coimbra Solar Physics Meeting "Ground-based Solar Observations in the Space Instrumentation Era", 5-9 October 2015, Coimbra, Portugal

#### **Outline**

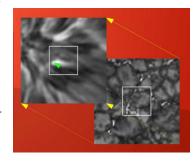
Goals

Data

Approximation of the  ${
m H}lpha$  spectral line profile

Auto-correlations and cross-correlations

Bright "mottle" – temporal evolution in  $H\alpha$ 


Temporal evolution of the group of GBPs

Conclusion

#### **Goals**

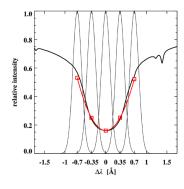
- \* to investigate the connection between structures observed in the chromosphere (Ca II H and Ha  $\alpha$ ) and the photosphere (G-band) with the help of co-spacial and co-temporal images
- \* to select an appropriate sub-field of the FOV and to investigate the effect of the size of this region of interest (ROI) on the area-averaged profile of the H $\alpha$  spectral line
- \* to study four spectral characteristics of the  ${\rm H}\alpha$  spectral line profile by employing auto-correlations and cross-correlations: the intensity in the line center  $I_c$ , the width of the profile  $w_p$ , the Doppler velocity  $v_c$ , and the Doppler velocity  $v_p$

- \* to focus on a single structure (bright mottle) in the  $H\alpha$  images to investigate how long in existed; its visibility in the  $H\alpha$  core and wings; effect on the temporal evolution of the studied spectral characteristics of the area-averaged profile
- \* to investigate the connection to the evolution of a long-living group of G-band bright points (GBPs)



#### Data

- \* Instrument: Dutch Open Telescope (DOT); La Palma, Canary Islands
- \* Observation time: 19th October 2005, 09:55 11:05 UT, 142 images with a cadence of 30 s (resp. 71 images with a cadence of 60 s)
- \* Image properties: FOV of 79  $\times$  58 arcsec (1112  $\times$  818 pixel); sampling of 0.071 arcsec/pixel


#### Data-sets

From all available data-sets of speckle reconstructed images we used three:

- \* G-band (430.5 nm)
- \* Ca II H (396.9 nm)
- \*  ${
  m H}lpha$  in the core of the line profile ( $\lambda_c=656,3$  nm) and in four points in the wings of the line profile ( $\lambda=\lambda_c\pm$  0.035 nm and  $\lambda=\lambda_c\pm$  0.07 nm, respectively)

# **Approximation of the H** $\alpha$ **spectral line profile**

- \* Input data: simultaneous images in five points across the H $\alpha$  line profile (core:  $\lambda_c=656,3$  nm; and wings:  $\lambda=\lambda_c\pm0.035$  nm and  $\lambda=\lambda_c\pm0.07$  nm)
- \* Approximated profile: deduction of the  $H\alpha$  line profile (re-sampled for 1400 points) based on the theoretical profile (spectral line atlas) and a  $4^{th}$  order polynomial fit across five known points of the measured profile



\* the approximated profile can be computed for a single pixel within the FOV or averaged over a selected area – region of interest (ROI)

# Spectral characteristics of the $H\alpha$ line profile

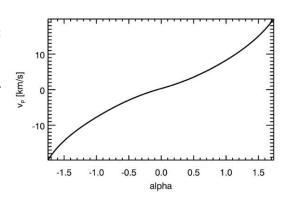
- \* Core intensity  $I_C$ : intensity minimum
- st Width of the approximated profile  $w_p$ : at the intensity level  $I_p$

$$I_p = \frac{\langle I_{-0.7}, I_{+0.7} \rangle + I_c}{2}$$

\* **Doppler velocity**  $v_C$ : the Doppler-shift of the line core

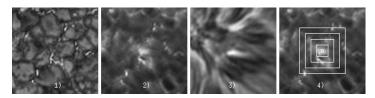
\* Doppler velocity  $v_p$ : Doppler-shift of the line profile (based on four points in the wings of the H $\alpha$  line profile — not computed from the approximated profile) based on the parameter  $\alpha$ :

$$\alpha = (F_1 + F_2 - F_3 - F_4)/(F_1 - F_3)$$

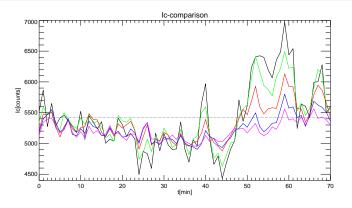

$$if \qquad (F_1 + F_2 - F_3 - F_4) > 0 \qquad or$$

$$\alpha = (F_1 + F_2 - F_3 - F_4)/(F_4 - F_2)$$

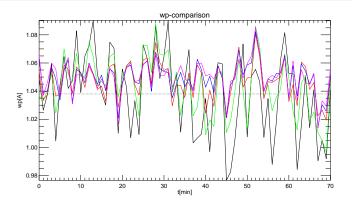
$$if \qquad (F_1 + F_2 - F_3 - F_4) \le 0$$


Scherrer et al., 1995; Sol. Phys. vol. 162,129 (algorithm for MDI on board SOHO)

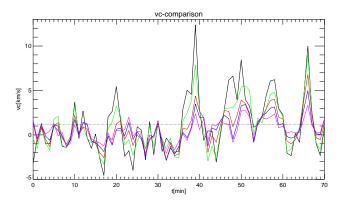
parametric curve for  $\alpha$ : computed from subsequent shifts of the atlas profile of the H $\alpha$  spectral line in order to deduce the velocity  $v_p$ 



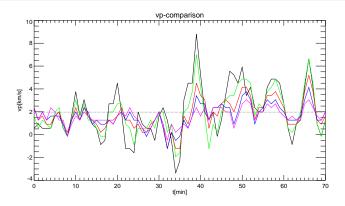

# The effect of area averaging


- \* Selected location: a prominent network region
- \* ROI of various sizes: from  $5 \times 5$  pixels to  $81 \times 81$  pixels (0.071 arcsec/pixel)




A sub-field of the FOV, centered at the selected ROI: 1) G-band; 2) Ca II H; 3)  $H\alpha(\lambda_c)$ ; and 4) the sizes of the ROI.




\*  $I_C$ : for areas of different size:  $5 \times 5$  (black),  $21 \times 21$  (green),  $41 \times 41$  (red),  $61 \times 61$  (blue) and  $81 \times 81$  (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

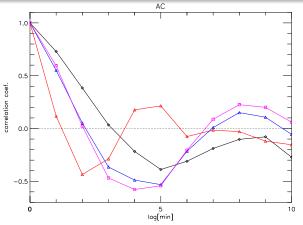


\*  $w_p$ : for areas of different size:  $5 \times 5$  (black),  $21 \times 21$  (green),  $41 \times 41$  (red),  $61 \times 61$  (blue) and  $81 \times 81$  (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

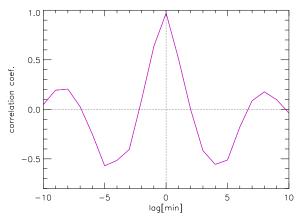


\*  $v_c$ : for areas of different size:  $5 \times 5$  (black),  $21 \times 21$  (green),  $41 \times 41$  (red),  $61 \times 61$  (blue) and  $81 \times 81$  (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

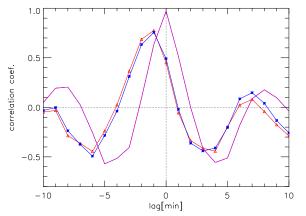



\*  $v_p$ : for areas of different size:  $5 \times 5$  (black),  $21 \times 21$  (green),  $41 \times 41$  (red),  $61 \times 61$  (blue) and  $81 \times 81$  (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

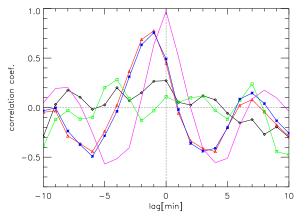
# Small summary – 1


- $\ast$  with the increasing size of the averaged area the peaks of the temporal evolution are decreasing in value (their positions are maintained)  $\Longrightarrow$  the source of the increase should be localized within the smallest area and larger areas are causing the highest/lowest values to be smoother over by numerous values in between
- \*  $w_p$ : shows minimal variations (within  $\sim$ 0.011 nm)
- \*  $I_c,v_c$  and  $v_p$ : show prominent peaks during the second half (35–71 min) of the observation  $\Longrightarrow$  possible indication of periodic behaviour
- \* for further studies we choose just one size of the ROI:  $21 \times 21$  pixel  $\Longrightarrow$  small enough to have a bigger percentage of network and big enough contain the interesting features for the duration of the observation

#### **Auto-correlations and cross-correlations**


- \* Auto-correlation is used in order to look for indication of periodicity of the spectral characteristics of the H $\alpha$  line profile ( $I_c$ ,  $w_p$ ,  $v_c$  and  $v_p$ )
- \* Cross-correlation is used in order to measure the similarity between the spectral characteristics of the  $H\alpha$  line profile  $(I_c$ ,  $w_p$ ,  $v_c$  and  $v_p$ )
- \* these were done for ROI of  $21 \times 21$  pixel (0.071 arcsec/pixel) and only for the second half (35–71 min) of the observation  $\implies$  events of interest



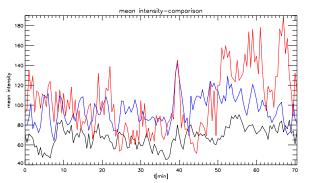

Auto-correlations of the spectral characteristics of the  $H\alpha$  line profile for ROI of  $21 \times 21$  pixels:  $I_c$  (black),  $w_p$  (red),  $v_c$  (blue) and  $v_p$  (magenta).



Cross-correlations of the spectral characteristics of the Hlpha line profile for ROI of 21 imes 21 pixels:  $v_c$  and  $v_p$  (magenta)



Cross-correlations of the spectral characteristics of the H $\alpha$  line profile for ROI of 21  $\times$  21 pixels:  $I_c$  and  $v_c$  (red);  $I_c$  and  $v_p$  (blue);  $v_c$  and  $v_p$  (magenta).



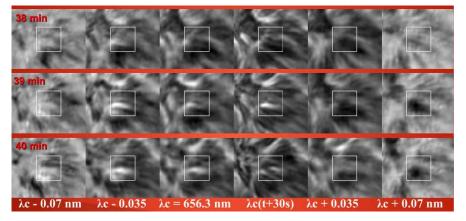

Cross-correlations of the spectral characteristics of the H $\alpha$  line profile for ROI of  $21 \times 21$  pixels:  $I_c$  and  $w_p$  (black);  $I_c$  and  $v_c$  (red);  $I_c$  and  $v_p$  (blue);  $v_c$  and  $v_p$  (magenta);  $w_p$  and  $v_p$  (green).

### Small summary – 2


- \* Auto-correlations of  $I_c$  ,  $v_c$  and  $v_p$  indicate the existence of a period  $\sim$ 8 min, where this indication is stronger for the velocities than for the intensity
- \* Cross-correlations of  $I_c$  with both  $v_c$  and  $v_p$  show high values for  $I_c$  lagging behind  $v_c$  and  $v_p$  by  $\sim$ 1.5 min
- st Cross-correlation of  $v_c$  with  $v_p$  show that both parameters obtained with different methods and from different input data represent the same physical quantity
- st Cross-correlations of  $w_p$  with both  $I_c$  and  $v_p$  show no statistically significant similarity between the studied parameters

#### Mean intensities in H $\alpha$ , Ca II H and G-band

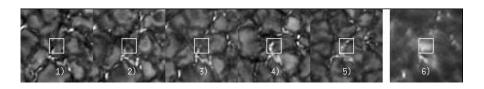



\* ROI of 21  $\times$  21 pixels: The temporal evolution of the mean intensities for the selected ROI: in G-band (black), in Ca II H (blue), and in H $\alpha$  (red) at  $\lambda_c$ .

\* t = 39.5 min: a prominent peak of the mean intensity in Ca II H and H $\alpha \Longrightarrow$  corresponds to answerable peaks for the spectral characteristics of the H $\alpha$  line profile  $(I_c, v_c \text{ and } v_p)$ 



The zoomed ROI: 1) G-band; 2) Ca II H; and 3)  $H\alpha(\lambda_c) \Longrightarrow co$ -spacial location of GBPs and bright features in Ca II H and  $H\alpha$ 


# Bright "mottle" – temporal evolution in $H\alpha$



# Small summary – 3

- \* bright "mottle": a short-lived ( $\sim$ 2 min) feature observed in H $\alpha$  ( $\lambda_c$ ) as a bright feature; also in one wing at shorther wavelengths, but observed in absorption at longer wavelengths  $\Longrightarrow$  may suggest physical movement of the plasma towards the surface of the Sun
- \* at 38 40 min:  $v_c$  and  $v_p$  have positive values (peak positive values in plots of temporal evolution of  $v_c$  and  $v_p$ )  $\Longrightarrow$  suggest down-flow

# Temporal evolution of the group of GBPs



Evolution of locations of the GBPs - from left to right: 1) G-band at 35 min; 2) G-band at 37 min; 3) G-band at 39.5 min; 4) G-band at 45 min; 5) G-band at 54.5 min and 6) Ca II H at 39.5 min.

## Small summary – 4

- \* a "long-lasting" conglomeration of GBPs starts to form 30 min after the beginning of the observation  $\implies$  it exist during the remainder of the observation
- \* it undergoes some development  $\Longrightarrow$  after  ${\sim}39$  min a meandering vertical "filigree" (buffeted by granulation)
- \* numerous occurences of bright "mottles" during the existence of the group of GBPs (not observed before the formation of the conglomeration)

#### **Conclusion**

- \* auto-correlations: statistically significant variations in the intensity and Doppler velocity  $\implies \sim 8 \text{ min}$  periods  $\implies$  could be an indication of magneto-acoustic wave propagation (Mathioudakis M. et al., 2013; Space Sci. Rev. vol. 175, lss. 1-4, pp. 1-27)
- \* cross-corelations: $I_c$  lagging behind  $v_c$  and  $v_p$  by  $\sim$ 1.5 min  $\Longrightarrow$  may indicate upward propagating waves and transport of energy (Kneer F. et al., 1981; Astron. Astrophys. vol. 102, pp. 147-155)
- \* repetitive occurences of bright "mottles" in  $H\alpha$  co–temporal and co–spacial with a conglomeration of GBPs  $\Longrightarrow$  representations of the same magnetic features (magnetic flux tubes buffeted by the granulation)

# Questions?