Dual instrument for flare and CME onset observations

Double Solar Coronagraph with Solar Chromospheric Detector and Coronal Multi-channel Polarimeter at Lomnický štít Observatory

Aleš Kučera¹, Steven Tomczyk², Jan Rybák¹, Scott Sewell², Peter Gömöry¹, Pavol Schwartz¹, Jaroslav Ambróz¹, Matúš Kozák¹.

¹Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Slovakia ²High Altitude Observatory, National Center for Atmospheric Research, Boulder, USA

IAUS 320 - Solar and Stellar Flares and Their Effects on Planets, August 10-14, 2015, Honolulu, Hawaii, USA

Presentation outline:

- Scientific background
- Observatory and Double Solar Coronagraph
- Postfocus instrument: Coronal Multi-channel Polarimeter
- Postfocus instrument: Solar Chromospheric Detector
- An example and near future plans

Scientific background

- Observations of onset and development of active events in the solar chromosphere and corona
- Measutement of plasma parameters of flares, CMEs and eruptive prominences
- Simultaneous measurements of velocity and full magnetic fields and other parameters with both instruments 2D spectropolarimetry

Observatory and Double Solar Coronagraph

Lomnický štít Observatory

- 2633 m above see level
- High Tatras mountain in the North Slovakia
- One of a few sites still performing routine ground-based coronal observations
- Astroclimate:

120 days/year, sunshine, observations
of prominences
70 days/year, observations of emission
corona

Observatory and Double Solar Coronagraph

Main features of CoMP-S

- operating spectral range: 500 1100 nm
- field of view: 14 arcmin × 11 arcmin
- 4-stage tunable Lyot filter with polarimeter (two ferroliquid crystal polarizers)
- sequential measurement of several VIS and near-IR lines
- deliverables: 2D full Stokes I, Q, U, V
- actual observational output: the linear combinations of I±Q I±U I±V
- then, e.g., Stokes I reconstructed from the sums

Two PCO edge CMOS cameras

camera module

filter module

polychromatic modulators FLCs, wide wavelength range, high polarimetric efficiency

Instr. rotator

refilter carouse

carouse

calib.

Lyot filter

Main features of CoMP-S

- operating spectral range: 500 1100 nm
- field of view: 14 arcmin × 11 arcmin
- 4-stage tunable Lyot filter with polarimeter (two ferroliquid crystal polarizers)
- sequential measurement of several VIS and near-IR lines
- deliverables: 2D full Stokes I, Q, U, V
- actual observational output: the linear combinations of I±Q I±U I±V
- then, e.g., Stokes I reconstructed from the sums

VIS- Andor Neo sCMOS

IR- Goodrich GA1280J

camera module

filter module

polychromatic modulators FLCs, wide wavelength range, high polarimetric efficiency

Instr. rotator

polychromatic **Camera modul scheme** modulators FLCs, wide wavelength range, Optosigma 60 mm EFL high polarimetric 011-2250 Goodrich cameras efficiency 1024X1024 15µm pixel ThorLabs PBS 253-900-1300nm Instr. rotator 1X1 inch Low pass beam splitter Thorlabs DMSP1000R Optosigma -300mm EFL 25X36 mm 015-0590 Andor cameras 2560X2160 6.5µm pixel VIS Optosigma 70 mm CVIMellesgriot EFL PBSH-450-1300 011-2260 1X1 inch VIS **New concept** refilter carousel VIS + IR carousel cameras VIS- Andor calib. Neo sCMOS Lyot filter **IR**- Goodrich GA1280J camera

camera module filter module

Postfocus instrument (based on CoMP-S concept) Solar Chromospheric Detector (ON and OFF coronagraph version)

SCD components and parameters

A: mechanical interface,

B: carousel prefilter: lines selection in 500-1100 nm, chromospheric: He I 587.6 nm, Na I 589.6 nm, H I 656.3 nm, Ca II 849.8 nm, Ca II 854.2 nm, Ca II 866.2, He I 1083.0 nm photospheric Fe I 557.6 nm, Fe I 630.15 nm, Fe I 630.25 nm
C: calibration carousel
D: 5-stage tunable Lyot filter with polarimeter (two ferro-liquid crystal polarizers) FWHM from 0,012 (550 nm) to 0,046 nm (1100 nm).
E: Camera: Andor Neo sCMOS

F: pointing device for camera

Electronics – bottom **Dimensions** height, length, width: 30x110x40 cm

The same for **"Coronagraph OFF"** version with achromatic objective.

Postfocus instrument (based on CoMP-S concept) Solar Chromospheric Detector (ON and OFF coronagraph version)

SCD is going to be assembled in September at Lomnocký štít Observatory by colleagues from High Altitude Observatory

An example and near future plans

Data taken during HOP 186 "Mass loading of quiescent prominences from multiwavelength observations"

- a quiescent prominence on 20 October 2012 at 07:09 UT
- Hα profile scanned in 11 wavelength settings, only Stokes I
- total scan time: 20.75 s
- wavelength steps core: ± 0.1 Å, wings: ± 0.2 Å
- FWHM of filter: 0.45 Å
- post-facto 4 × 4 pixel binning, final sampling: 1.3 arcsec/px
- Gaussian fitting of 11 samples of $H\alpha$ profiles
- derived parameters:
 - Gaussian amplitude A
 - Dopplershift of λ_C
 - Gaussian halfwidth w

Gaussian amplitude

AIA/SDO 07:11 UT, 211 Å + 193 Å + 171 Å

AIA/SDO 07:11 UT, 304 Å + 211 Å + 171 Å

An example and near future plans

Observations and cooperation

High Altitude Observatory, National Center for Atmospheric Research, Boulder, USA

Lomnicky Peak Longitude: 20.22° E Latitude: 49.20° N Altitude: 2632

Mauna Loa Longitude: 155.58° W Latitude: 19.54° N Altitude: 3414

Longitude Difference is 175.80° which offers the possibility of coordinated observing

SCD scheme (ON coronagraph case)

Postfocus instrument Coronal Multi-channel Polarimeter

24 TB RAID Storage System, 800 MB/s sustained

2) New instrument for Lomnický peak: CoMP-S

c) technical parameters

CoMP-S Tunable Filter

Advances in broadband polarizers and super-achromatic waveplates offer the possibility for the CoMP-S Lyot filter to operate over a much wider wavelength range than CoMP

2) New instrument for Lomnický peak: CoMP-S

c) technical parameters

CoMP-S Polarimeter

- 1. polarization modulator: scheme from HAO Prominence Magnetometer (ProMag): 2 ferroelectric liquid crystals (FLC), fixed retarder followed by a linear polarizer (analyzer)
- 2. Recent polychromatic modulators based on FLCs can operate over a wide wavelength range with high polarimetric efficiency

Theoretical efficiency of the Stokes polarimeter for the CoMP-S

3) Planned observations

Emission Line Choice

Judge et al. (NCAR Tech Note 446, 2001) showed that FeXIII 1074.7 has the best expected S/N for Stokes V based on line intensity and background levels

Ion	λ	$\log I$	Figure of merit	$\operatorname{Max} V/I$	$\log T_{ m e}$
	$\mu { m m}$	${\rm erg} {\rm \ cm}^{-2} {\rm \ s}^{-1} {\rm \ sr}^{-1}$	$(\max s/n (V))$		
Fe XIII	1.0746	1.35	23.8	5.6-4	6.22
${ m Si}$ IX	3.9346	-0.17	23.4	1.5-3	6.04
${ m Si}~{ m X}$	1.4300	0.73	11.4	4.5 - 4	6.13
${ m Mg}$ VIII	3.027	-0.36	7.2	5.6-4	5.92
Fe XIII	1.0797	0.72	6.9	2.3-4	6.22
Fe XIV	0.5303	1.36	5.8	1.5-4	6.30
Fe XI	0.7891	0.96	5.8	1.8-4	6.10
${\rm Fe} {\rm X}$	0.6374	1.12	5.2	1.5-4	6.03
S IX	1.252	-0.07	1.7	7.2-5	6.0
Si VII	2.481	-0.71	1.1	7.0-5	5.8

Prospects and possibilities

- to exploit joint potential of twin coronagraphs on the common mount
- on-going work on co-pointing of the coronagraphs, an aim: 2-arcsec co-pointing precision (Rob Hammerschlag, Hankom Engineering Rotterdam)
- possibility of parallel observations in the future
- right coronagraph: CoMP-S, left coronagraph:
 - small diffraction grating spectrograph
 - tests of new instruments, please contact: J. Rybak rybak@astro.sk
 - at disposal for hosting instruments for temporary joint observations (since October 2013: CorMag spectropolarimeter for the green coronal line developed in Osservatorio Astronomico di Turin, INAF, by prof. Silvano Fineschi)

shape of the camera modul

IR beamsplitter

IR cameras (line + background)

The background cameras are for strictly simultaneous acquisition of the scattered light in the Earth atmosphere.

VIS beamsplitter

VIS cameras (line + background)

Dichroic mirror

