

¹Naval Research Laboratory, ²Institut d'Astrophysical Observatory, ⁴INAF-Astrophysical Observatory, ⁴INAF-Astroph

1. What is WAMIS?

WAMIS is the Waves And Magnetism In the Solar Atmosphere mission proposed for the NASA Low Cost Access to Space program. It is designed to make direct solar coronal measurements of not only the strength and orientation of the magnetic field but also the signatures of wave motions in order to better understand coronal structure, solar activity and the role of MHD waves in heating and accelerating the solar wind.

WAMIS will take advantage of greatly improved infrared (InGaAs) detectors, forward models, advanced diagnostic tools and inversion codes to obtain a breakthrough in the measurement of coronal magnetic fields and in the understanding of the interaction of these fields with space plasmas. This will be achieved with a high-altitude long-duration balloon-borne payload consisting of a coronagraph with an IR spectro-polarimeter focal plane assembly. The balloon platform provides minimum atmospheric absorption and scattering at the IR wavelengths in which these observations are made.

Table 1. WAMIS Long Duration Balloon (LDB)			
Instrument Characteristics			
	Internally occulted		
l'elescope type	Lyot coronagraph		
Ohissting laws	f/10 singlet, aperture		
Objective lens	20cm, focal length 203.3cm		
Objective Strevy Light	$<0.2 \ \mu B_{\odot}$ goal		
Objective Stray Light	1.2-2.8 R		
Overall Throughput	≈5%		
В	$9.34 ext{x} 10^6 ext{ erg/cm}^2/ ext{s/sr/nm}$		
Dista Saala	4.5"/pixel low mag.		
Flate Scale	1.5"/pixel high mag.		
Fe XIII (1074.7nm)	1x10 ⁵ photons/pixel/sec		
Count Rate @ 1.1 R	@1.5"/pixel magnification		
Detector	Goodrich camera		
	15 micron pixels,		
	1280x1024 format		
Inner FOV Limit	1.02 R		
	±2.8 R _@ @4.5"/pixel		
	Sun Centered		
Outer FOV	1.8 R @1.5"/pixel		
	Limb Centered		
Drimowy Lines of	Fe XIII (1074.7, 1079.8 nm)		
Interest	Fe X (637.5 nm)		
Interest	He I (1083.0 nm)		
Filter	Tunable Lyot filter,		
	3.8cm aperture		
	530 – 1083 nm range		
Duration of Continuous	2 weeks minimum		
Observational Sequence	≥4 week optimum		

3. Mission Concept Overview

Why a long duration balloon payload?

• To remove the polarization noise (variability) introduced by the Earth atmosphere

• To improve the stray light levels, hence the magnetic field measurement sensitivity by reducing the sky brightness background

• To increase the flight duration to at least 2 weeks (1/2 solar rotation) of observations without day-night cycle or weather related interruptions. This provides better temporal resolution and increases the probability for observing transients. In addition, this allows for tomographic reconstruction to separate the 3D structure of the corona from short-term temporal evolution.

6. Design Improvements beyond CoMP

- > CoMP-S filter/polarimeter design and the Vis-IR detector will have wider wavelength range covering multiple ionization stages, enabling diagnostics at a range of temperatures required for both the fast and slow solar wind, as well as prominences.
- > Ferroelectric Liquid Crystals (FLCs) will have a faster response time than the current Liquid Crystal Variable Retarders (LCVRs) on CoMP.
- > Reduced atmospheric variations means that a beam splitter is not needed (spectral lines can be acquired with **higher spatial resolution**).

> f# can be optimized with **minimum instrumental polarization effect**.

7. WAMIS Coronagraph

Table 4. Optical Design		
Objective	203.3cm fl.	
Field Lens	31.0cm fl.	
Collimating Lens	38.0cm fl.	
Re-imaging Lens	High Mag. 38.0cm fl.	
	Low Mag. 12.9cm fl.	

Waves and Magnetism in the Solar Atmosphere (WAMIS)

	Observational R	equirements			
Table 2. Science Traceability; see text for details					
Science Objective	FoV/Spatial Resolution	Physica			
1.Fast/Slow Wind,	1.02-1.8 R ₀ /1.5" pix.	Waves: Dopp			
Coronal B structure	1.02-2.8 R [°] /4.5" pix.	direction, p			
2. Prominences,	1.02.1.8 p / 1.5" niv	B-field magnitude a			
flux ropes	$1.02-1.6 \text{ K}_{\odot}/1.5 \text{ pix}$	and I			
3 CME Shocks	1.02-2.8 R /4.5" nix	B-field magnitud			
J. CIVIL SHOCKS	$1.02-2.0 \text{ K}_{\odot}/4.5 \text{ pix.}$	density; Waves:			
4. Reconnection	$1.02-1.8 \text{ R}_{\odot}/1.5$ " pix.	B-field magnitud			
	Ŭ Ŭ	Doppler velocit			

	Key Observables		
Table 3. Key WAMIS Observables			
Observable	Method of Analysis		
Line-of-Sight B Field Strength	Circular Polarization	Ι	
Plane-of-Sky B Field Direction	Linear Polarization	R	
Line-of-Sight Velocity	Intensity vs. Wavelength		
Plasma Density	Fe XIII 1074.7nm/1079.8nm Intensity Ratio, K-corona from continuum		

long, 450kg mock instrument.

Y.-K. Ko¹, F. Auchere², R. Casini³, S. Fineschi⁴, S. Gibson³, M. Knoelker³, Q. Wu³, M. Konoli⁵, J. Rybak⁶, D. Socker¹, L. Strachan^{1,7}, S. Tomczyk³, A. Vourlidas^{1,8}, Q. Wu³

SH53B-4221

Aperture (m)