Three-dimensional Radiative Transfer Modeling of the Hanle and Zeeman Effects in Chromospheric and Transition Region Lines

Jiří Štěpán

Astronomical Institute, Czech Academy of Sciences Ondřejov, Czech Republic

Future of Polarimetry — Brussels, September 21, 2015

Four STSMs at Instituto de Astrofísica de Canarias

- June 2012
- November 2012
- June 2013
- June 2015

Collaborations with **Prof. Javier Trujillo Bueno**, **Dr. Luca Belluzzi, Mr. Tanausú del Piño Alemán**

Spectropolarimetric modeling of the solar chromosphere

- Chromosphere: The most enigmatic layer of the solar atmosphere.
- Magnetic fields modulate the energy propagation to the corona

- ► More than 90% of it are weakly magnetized quiet regions (with presumably ⟨B⟩ ~ 10 G).
- Diagnostics: Via strong optically thick spectral lines (hydrogen Lyα, Hα, Ca II 8542, etc.)
- ▶ Optical thickness + low density → NLTE line formation → self-consistent RT needed)

Magnetic sensitivity of the chromospheric lines

- ► Quiet chromosphere: Hot and weakly magnetized → Zeeman effect is usually very weak
- But many of the lines are sensitive to scattering polarization and Hanle effect (i.e., modification of linear polarization due to action of weak magnetic fields)

Magnetic sensitivity of the chromospheric lines

- ► Quiet chromosphere: Hot and weakly magnetized → Zeeman effect is usually very weak
- But many of the lines are sensitive to scattering polarization and Hanle effect (i.e., modification of linear polarization due to action of weak magnetic fields)

The Hanle effect:

- Insensitive to temperature
- Very broad range of sensitivities of spectral lines to the field strength (from mG to kG)

The need for 3D modeling

Geometry plays a crucial role in the scattering polarization.

More realistically:

The need for 3D modeling

Geometry plays a crucial role in the scattering polarization.

STSM #1 (June 2012): First applications of PORTA

To study the the atmosphere in full 3D we need:

- Realistic simulations of the solar atmosphere (3D MHD)
- Numerical tools for forward synthesis of the polarized spectra

STSM #1 (June 2012): First applications of PORTA

To study the the atmosphere in full 3D we need:

- Realistic simulations of the solar atmosphere (3D MHD)
- Numerical tools for forward synthesis of the polarized spectra
- The STSM in June 2012:
 - We have already had a general-purpose 3D NLTE solver
 PORTA developed in the previous years
 - But the code was only developed for serial calculations, hence only applicable to small problems
 - First realistic test: Scattering polarization in the wing of the H & K doublet of Ca II including J-state interference

Jiří Štěpán

Three-dimensional Radiative Transfer Modeling

STSM #1 (June 2012): First applications of PORTA

Hydrogen Ly α **line** of the upper solar chromosphere motivated by the rocket experiment **CLASP**.

- We have used a snapshot from 3D MHD simulation of the group of Prof. Mats Carlsson (Univ. of Oslo)
- NLTE synthesis in a 2D vertical slice of the model

A glimpse of an enormous **spatial variability** of the signals **sensitive to the presence of magnetic fields**:

Full 3D solution was impossible with serial version of PORTA: 3D snapshots contains $\sim 10^8$ mesh points; single NLTE solution would last for several years.

Jiří Štěpán

STSM #2 (November 2012): Parallelization of PORTA

- Between June a November 2012 we have worked on parallelization of the code using original algorithms
- During the second STSM at IAC we have finished and extensively tested the new code up so several hundreds CPU cores (almost linear scaling has been confirmed)...
- ...and we wrote the ensuing paper (Štěpán & Trujillo Bueno 2013)

Jiří Štěpán

STSM #3 (June 2013): Hydrogen Ly α line in full 3D

- In late 2012 and early 2013, we have be running PORTA at the MareNostrum supercomputer (Barcelona Supercomputing Center) to get the full 3D solution of the Lyα line problem.
- \blacktriangleright CPUs in use per iteration: \sim 2000, total CPU time: $\sim 1\,\text{Mh}$

STSM #3 (June 2013): Hydrogen Ly α line in full 3D

- In late 2012 and early 2013, we have be running PORTA at the MareNostrum supercomputer (Barcelona Supercomputing Center) to get the full 3D solution of the Lyα line problem.
- \blacktriangleright CPUs in use per iteration: \sim 2000, total CPU time: $\sim 1\,\text{Mh}$

Analysis performed within the STSM #3:

- The complexity of the 2D result from 2012 was confirmed but the data are much richer and more realistic (Štěpán et al. 2015).
- **B** tends to depolarize the linear polarization signals
- ► We have obtained measurable statistical quantities sensitive to B to be used in comparison with the CLASP data (more in Javier's talk).

Jiří Štěpán

STSM #4 (June 2015): Infrared triplet of Ca II Results obtained and analyzed during the STSM #4:

- Ca II IR triplet around 850 nm (mid-chromospheric lines)
- Mainly sensitive to orientation of magnetic field
- We found that 3D solution is necessary
- In contrast to Lya: Strong sensitivity to velocity fields
- Zeeman effect starts to significantly interfere with the Hanle effect

(Štěpán & Trujillo Bueno 2015)

Jiří Štěpán

STSM #4 (June 2015): Infrared triplet of Ca II

Summary

- \blacktriangleright Other lines being currently studied: Mg II k, H α
- Magnetic field mostly acts as effectively turbulent in the considered models and mostly depolarizes the lines
- Depending on the spectral line, gradients of the velocity fields produce (de)polarization up to the same order of magnitude as magnetic fields
- Of the same order of magnitude is the impact of horizontal thermal inhomogeneities of the atmosphere

Conclusions and Outlook

- Comparison of observations and forward synthesis provides test for the the MHD simulations
- In order to disentangle the role of individual processes, multi-line modeling and observations with the new-generation solar telescopes seems to be necessary
- Statistical comparison of the models with observations and models may be a possible way to proceed

Many thanks to the COST Action MP1104

and in particular to

Dr. Hervé Lamy