Possible chromospheric response to the dynamics of photospheric G-band bright points

M. Bodnárová, D. Utz, J. Rybák

October 5, 2015

Coimbra Solar Physics Meeting "Ground-based Solar Observations in the Space Instrumentation Era", 5 – 9 October 2015, Coimbra, Portugal

Outline

Goals

Data

Approximation of the $H\alpha$ spectral line profile

Autocorrelations and cross-correlations

Bright "mottle" – temporal evolution in ${\rm H}\alpha$

Temporal evolution of the group of GBPs (+v)

Conclusion

Goals

 \ast to investigate the connection between structures observed in the chromosphere (Ca II H and Ha $\alpha)$ and the photosphere (G-band) with the help of co-spacial and co-temporal images

* to select an apropiate subfield of the FOV and to investigate the effect of the size of this region of interest (ROI) on the area-averaged profile of the H α spectral line

* to study four spectral characteristics of the H α spectral line profile by employing autocorrelations and cross-correlations: the intensity in the line center I_c , the width of the profile w_p , the Doppler velocity v_c , and the Doppler velocity v_p

* to focus on a single structure (bright mottle) in the H α images — to investigate how long in existed; its visibility in the H α core and wings; effect on the temporal evolution of the studied spectral characteristics of the area-averaged profile

* to investigate the connection to the evolution of a longliving group og G-band bright points (GBPs)

Data

* Instrument: Dutch Open Telescope (DOT); La Palma, Canary Islands
* Observation time: 19th October 2005, 09:55 – 11:05 UT, 142 images with a cadence of 30 s (resp. 71 images with a cadence of 60 s)
* Image properties: FOV of 79 × 58 arcsec (1112 × 818 pixel); sampling of 0.071 arcsec/pixel

Datasets

From all available datasets of speckle reconstructed images we used three:

- * G-band (430.5 nm)
- * Ca II H (396.9 nm)

* $\mathbf{H}\alpha$ in the core of the line profile ($\lambda_c = 656,3$ nm) and in four points in the wings of the line profile ($\lambda = \lambda_c \pm 0.035$ nm and $\lambda = \lambda_c \pm 0.07$ nm, respectively)

Approximation of the H α spectral line profile

* Input data: simultanous images in five points across the H α line profile (core: $\lambda_c = 656,3$ nm; and wings: $\lambda = \lambda_c \pm 0.035$ nm and $\lambda = \lambda_c \pm 0.07$ nm)

* **Aproximated profile:** deduction of the $H\alpha$ line profile (re-sampled for 1400 points) based on the theoretical profile (spectral line atlas) and a 4^{th} order polynomial fit across five known points of the measured profile

* the aproximated profile can be computed for a single pixel within the FOV or averaged over a selected area – region of interest (ROI)

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 6/27

Spectral characteristics of the $H\alpha$ line profile

- * Core intensity I_C: intensity minimum
- * Width of the aproximated profile w_p : at the intensity level I_p

$$I_p = \frac{\langle I_{-0.7}, I_{+0.7} \rangle + I_c}{2}$$

* **Doppler velotity** v_C : the doppler-shift of the line core

* **Doppler velocity** v_p : doppler-shift of the line profile (based on four points in the wings of the H α line profile — not computed from the approximated profile) based on the parameter α :

$$\alpha = (F_1 + F_2 - F_3 - F_4)/(F_1 - F_3)$$

if $(F_1 + F_2 - F_3 - F_4) > 0$ or
$$\alpha = (F_1 + F_2 - F_3 - F_4)/(F_4 - F_2)$$

if $(F_1 + F_2 - F_3 - F_4) \le 0$

Scherrer et al., 1995; Sol. Phys. vol. 162,129 (algorithm for MDI on board SOHO)

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 8/27

parametric curve for α : computed from subsequent shifts of the atlas profile of the H α spectral line in order to deduce the velocity v_p

The effect of area averaging

- * Selected location: a prominent network region
- * ROI of various sizes: from 5 \times 5 pixels to 81 \times 81 pixels

A subfield of the FOV, centered at the selected ROI: 1) G-band; 2) Ca II H; 3) $H\alpha(\lambda_c)$; and 4) the sizes of the ROI.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 10/27

* I_C : for areas of different size: 5×5 (black), 21×21 (green), 41×41 (red), 61×61 (blue) and 81×81 (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 11/27

* w_p : for areas of different size: 5×5 (black), 21×21 (green), 41×41 (red), 61×61 (blue) and 81×81 (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 12/27

* v_c : for areas of different size: 5×5 (black), 21×21 (green), 41×41 (red), 61×61 (blue) and 81×81 (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 13/27

* v_p : for areas of different size: 5×5 (black), 21×21 (green), 41×41 (red), 61×61 (blue) and 81×81 (magenta) pixels. The horizontal line indicates the mean value for the smallest ROI.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 14/27

Small summary – 1

* with the increasing size of the averaged area the peaks of the temporal evolution are decreasing in value (their positions are maitained) \implies the source of the increase should be localized within the smallest area and larger areas are causing the highest/lowest values to be smoother over by numerous values in between

 w_p : shows minimal variations (within 0.011 nm)

* I_c , v_c and v_p : show prominent peaks during the second half (35–71 min) of the observation \implies possible indication of periodic behaviour

* for further studies we choose just one size of the ROI: 21×21 pixel \implies small enough to have a bigger percentage of network and big enough contain the interesting features for the duration of the observation

Autocorrelations and cross-correlations

* Autocorrelation is used in order to look for indication of periodicities of the spectral characteristics of the H α line profile (I_c , w_p , v_c and v_p)

* Cross-correlation is used in order to measure the similarity between the spectral characteristics of the H α line profile (I_c , w_p , v_c and v_p)

* these were done for ROI (21 \times 21 pixel) and only for the second half (35–71 min) of the observation \implies events of interest

Autocorrelations of the spectral characteristics of the H α line profile for ROI of 21 × 21 pixels: I_c (black), w_p (red), v_c (blue) and v_p (magenta).

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 17/27

Cross-correlations of the spectral characteristics of the H α line profile for ROI of 21 \times 21 pixels: I_c and w_p (black); I_c and v_c (red); I_c and v_p (blue); v_c and v_p (magenta); w_p and v_p (green).

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 18/27

Small summary – 2

* Autocorrelations of I_c , v_c and v_p indicate the existence of a period 8 min, where this indication is stronger for the velocities than for the intensity

* Cross-correlations of I_c with both v_c and v_p show high values for I_c lagging behind v_c and v_p by 1.5 min

* Cross-correlation of v_c with v_p show that both parameters obtained with different methods and from different input data represent the same physical quantity

 \ast Cross-correlations of w_p with both I_c and v_p show no statistically significant similarity between the studied parameters

Mean intensities in H α , Ca II H and G–band

* ROI of 21 \times 21 pixels: The temporal evolution of the mean intensities for theselected ROI: in G-band (black), in Ca II H (red), and in H α (blue) at λ_c .

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 20/27

* t = 39.5 min: a prominent peak of the mean intensity in Ca II H and H $\alpha \implies$ corresponds with answerable peaks for the spectral characteristics of the H α line profile (I_c , v_c and v_p)

The zoomed ROI: 1) G-band; 2) Ca II H; and 3) $H\alpha(\lambda_c) \implies co-spacial$ location of GBPs and bright features in Ca II H and $H\alpha$

Bright "mottle" – temporal evolution in $H\alpha$

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 22/27

Small summary – 3

* bright "mottle": a shortlived (2 min) feature observed in H α (λ_c) and also in one wing at shorther wavelengths, but not observed at longer wavelengths \implies may suggest physical movement of the plasma towards the surface of the Sun

* at 38 – 40 min: v_c and v_p have positive values \Longrightarrow suggest downflow

Temporal evolution of the group of GBPs $_{(+v)}$

Evolution of locations of the GBPs - from left to right: 1) G-band at 35 min; 2) G-band at 37 min; 3) G-band at 39.5 min; 4) G-band at 45 min; 5) G-band at 54.5 min and 6) Ca II H at 39.5 min.

Marcela Bodnárová | Astronomical Institute of the Slovak Academy of Sciences 24/27

Small summary – 4

* a "long-lasting" conglomeration of GBPs is formed at around 30 min after the begining of the observation \implies it exist during the remainder of the observation

* it undergoes some development \Longrightarrow after 39 min a meandering vertical "filigree" (bufeted by granulation)

* numerous ocurence of bright "mottles" during the existence of the group of GBPs (not observed before the formation of the conglomeration)

Conclusion

* autocorrelations and crosscorelations: statistically significant variations in the intensity and doppler velocity \implies 8 min periods and I_c lagging behind v_c and v_p by 1.5 min \implies could be an indication of magneto-acoustic wave propagation (Mathioudakis M. et al., 2013; Space Sci. Rev. vol. 175, lss. 1-4, pp. 1-27)

* repetitive occurence of bright "mottles" in H α co-temporal and co-spacial with the existence of a conglomeration of GBPs \implies representations of the same magnetic features (magnetic flux tubes bufeted by the granulation)

