MTR/THEMIS He I 587,6 nm D₃ spectropolarimetry

1 August 2014

GONG H-Alpha / 6562.8 A

NISP

THEMIS 1. august 2014

 $\text{H}\alpha \text{ GONG}$

He I 587,6 nm D₃ - výsledky PCA inverzie

Indukcia magnetického poľa protuberancie: 10 – 50 G

Schmieder et al. (2014) Astronomy & Astrophysics 25 20

> 15 10 5

Arcsec

Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP

Figure by A. López Ariste

Indukcia magnetického poľa protuberancie: 0 – 20 G

Field Strength

Arcsec

Schmieder et al. (2013) The Astrophysical Journal

PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE

Figures by A. López Ariste

Indukcia magnetického poľa protuberancie: ? G

14th European Solar Physics Meeting Dublin, 8th – 12th September 2014

- coronal- and coronal magnetometry oriented talks, instruments, projects, missions, ...
- discussions on future collaboration
 - Kiyoshi Ichimoto (Hinode)
 - Kostas Tziotziou

Chinese Spectral Radioheliograph for Solar Physics Studies

CSRH

Yihua Yan

National Astronomical Observatories, Chinese Academy of Sciences Beijing 100012, China With CSRH Team including: J Zhang*, Z Chen, W Wang, F. Liu, & L. Geng *Peking University, Beijing, China National Major Scientific Research Facility R&D Program (ZDYZ2009-3)

14th European Solar Physics Meeting, 8-12 Sept 2014, Dublin, Ireland

Scientific Motivations:

- The available radio facilities are either with high time and spectral resolution but without spatial resolution, or with high time and spatial resolution but at only one or a few frequencies.
- It is needed to have high spectral resolution over wide band as well (Gary 2013).
- Imaging spectroscopy over cm-λ & dm-λ is important for addressing the problems of primary energy release, particle
 acceleration, and transportation processes, and the coronal magnetic fields (Bastian, et al., ARAA, 1998; Gary & Keller 2004; Aschwanden 2004; Pick & Vilmer 2008, Klein et al. 2008; Tomczyk et al. 2013).
- But now WMA, LOFAR, etc., at metric and lower frequencies, and ALMA at mm, THz.

Solar Probe Plus

A NASA Mission to Touch the Sun

Solar Probe Plus – A Mission to Touch the Sun

Rob Decker and Nicky Fox Johns Hopkins Applied Physics Laboratory Laurel, Maryland, USA

Representing SPP Project and Science Investigation Teams

NASA: Solar Probe Plus (SPP)

- launch 2018
- lifetime 7 years
- perihelion 10 20 Solar Radius
- aphelion 0.73 AU

SPP Investigations to Answer the Science Questions

Solar Probe Plus A NASA Mission to Touch the Sun

	Investigation	Instruments	Principle Investigator
	Fields Experiment (FIELDS)	4 x Electric Antennas (+ 1 probe on mag boom) 2 x Fluxgate Magnetometer (MAG) 1 x Search Coil Magnetometer (SCM)	Prof. Stuart D. Bale, University of California Space Sciences Laboratory, Berkeley, CA
	Integrated Science Investigation of the Sun (ISIS)	High energy Energetic Particle Instrument (EPI-Hi) Low energy Energetic Particle Instrument (EPI-Lo)	Dr. David J. McComas, Southwest Research Institute, San Antonio, TX
	Solar Wind Electrons Alphas and Protons (SWEAP)	Solar Probe Faraday Cup (SPC) 2 Solar Probe ANalyzers (SPAN; ESAs)	Dr. Justin Kasper, University of Michigan, Ann Arbor, MI & Smithsonian Astrophysical Observatory, Cambridge, MA
	Wide-field Imager for Solar PRobe (WISPR)	White light imager	Dr. Russ Howard, Naval Research Laboratory, Washington, DC
	Heliospheric Origins with Solar Probe Plus (HeliOSPP)	Observatory Scientist: Addresses SPP science objectives via multi-instrument data analysis to optimize the scientific productivity of the mission	Dr. Marco Velli, Jet Propulsion Laboratory, Pasadena, CA

Current state of the Interhelioprobe mission

I. Zimovets¹, L. Zelenyi¹, V. Kuznetsov² & the IHP Team^{1,2,...}

¹Space Research Institute (IKI), Russian Academy of Sciences, Moscow, Russia ²Institute of Earth magnetism, ionosphere and radiowaves propagation (IZMIRAN), Troitsk, Russia

ESPM-14, Trinity College Dublin, Ireland (11:20-11:40, 08-Sep-2014)

Interhelioprobe spacecraft raw model

Instruments for remote observations of the Sun

№	Instrument	Measurements	Characteristics	Mass [kg]	Power [W]
1	Multi-functional optical telescope TAHOMAG	Stokes parameters Vectors of magnetic and velocity fields at the photosphere Intensity of white-light radiation	FOV=600"; d α =0.16"-0.40"; λ =3000, <u>6301</u> , 6302, 6528 Å; d λ =15 mÅ; B=±10 kGs; dB=2-3 Gs (line-of-sight);	36	40
2	Multi-channel solar photometer PHOTOSKOP	Solar constant Global oscillations of the Sun	FOV=10°; λ=3000-16000 Å; dλ=100 Å; dI=0.3%; dI/dt=0.1%/year	6.5	12
3	Imaging EUV and SXR telescope TREK	Images of the Sun Localization of active regions	FOV=0.7°-2°; dα=1.2"-3.5"; λ=131, 171, 304, 8.42 Å	15	15
4	Solar HXR telescope- spectrometer SORENTO	Images of solar HXR sources and their spectra	FOV=1.5°; E=5-100 keV; dα=7"; dt=0.1 s	8	6
5	Solar coronagraph OKA	Images of the solar corona, eruptive events, transients	FOV=8°; dα=30"; λ=4000-6500 Å	5	7
6	Heliosphereic Imager HELIOSPHERA	Images of the outer corona and inner heliosphere	FOV=20°; dα=70"; λ=4000-6500 Å	5	7
7	X-ray spectrometer CHEMIX	Spectra of solar X-ray emission; Chemical composition of solar corona plasma Plasma temperature and velocity diagnostics	FOV=10°; dα=5'; λ=1.5-12.0 Å; dλ=0.01 Å dT=1 MK; dv=10 km/s	6	12
8	Hard X-ray polarimeter PING-M	Fluxes, spectra, polarization of solar hard X-ray emission	Epol=30-150 keV; Ex,γ=1.5-150 keV; dE=200 eV (E=1.5-25 keV); dE/E=15% (E=60 keV);	12.5	19.5
9	Scintillation gamma-spectrometer HELIKON-I	Fluxes and spectra of hard X-rays and gamma- rays (of not only solar origin)	E=0.01-15 MeV; dE/E=8% (E=660 keV); dt=0.001-8 s	13	12
10	Gas gamma-ray spectrometer SIGNAL	Fluxes and spectra of solar (not only) gamma- rays	Eγ=0.05-5 MeV; dE/E=3% (E=660 keV); dt=0.1-60 s	5	20
				112.0	150.5 14

Cartoon of the Interhelioprobe Ground Segment

Max Scientific traffic ~1 GB/day at rates up to 1 Mbit/s (distance dependant)

Solar Orbiter

Exploring the Sun-Heliosphere Connection

Daniel Müller Solar Orbiter Project Scientist

www.esa.int

European Space Agency

SOLAR ORBITER

Payload

In-Situ Instruments						
EPD	Energetic Particle Detector	J. Rodríguez- Pacheco	Composition, timing and distribution functions of energetic particles			
MÀG	Magnetometer	T. Horbury	High-precision measurements of the heliospheric magnetic field			
RPY Radio & Plasma Yayes		M. Maksimovic	Electromagnetic and electrostatic waves, magnetic and electric fields at high time resolution			
SWA	Solar Wind Analyser	C. Oʻgen	Sampling protons, electrons and heavy ions in the solar wind			
Remote-Sensing Instruments						
EUI	E×treme Ultrayiolet Imager	P. Rochus	High-resolution and full-disk EUY imaging of the on- disk corona			
METIS	Coronagraph	E.Antonucci	Yisible and (E)UY Imaging of the off-disk corona			
РНІ	Polarimetric & Helioseismic Imager	S. Solanki	High-resolution vector magnetic field, line-of-sight velocity in photosphere, visible imaging			
SoloHI	Heliospheric Imager	R. Howard	Wide-field visible imaging of the solar off-disk corona			
SPICE	Spectral Imaging of the Coronal Environment	European-led facility	EUY spectroscopy of the solar disk and near-Sun corona			
STIX	Spectrometer/Telescope for Imaging X-rays	S. Krucker	Imaging spectroscopy of solar X-ray emission			

En Li

ASPIICS on PROBA-3

Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire

Sébastien Vives, Philippe Lamy Laboratoire d'Astrophysique de Marseille

France: P. Levacher (LAM), M. Marcellin (LAM), S. Koutchmy (IAP), J. Arnaud (LUAN), E. Quemerais (SA), L. Damé (SA), R. Lallement (SA), J. C. Vial (IAS) <u>UK</u>: R. Harrisson (RAL), N.R. Waltham (RAL)

<u>Belgium</u>: P. Rochus (CSL), J. M. Defise (CSL), D. Berghmans (ORB), J. F. Hochedez (ORB) <u>Spain</u>: J. Pacheco (ASRG/UAH), J. Blanco (ASRG/UAH) <u>Portugal</u>: J. M. Rebordao (INETI/LAER), D. Maia (INETI/LAER) <u>Switzerland</u>: W. Schmutz (PMOD/WRC), A. Benz (PMOD/WRC) <u>Italy</u>: G. Naletto San Diego, SPIE August, 26th 2007

What is ASPIICS ?

• 2 S/C separated by 150 m realize a giant coronagraph and will achieve conditions close to a total solar eclipse

Summary

- China: CSRH (RadioHeliograph)
- NASA: Solar Probe Plus (in situ)
- Russia: Interhelioprobe
- ESA Solar Orbiter
- ESA Praba 3 ASPIICS