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Multiwavelength Observations of Small-scale Reconnection Events Triggered by Magnetic Flux Emergence in the Solar Atmosphere
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| was missing a concise summary of the most important problems
and alternative explanations of the chromospheric fine structures
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ABSTRACT

Narrow, thread-like structures in the Sun’s chromosphere are currently understood to be plasma guided along
narrow tubes of magnetic flux. We report on | s cadence imaging spectroscopic measurements of the He line with
the IBIS Fabry—Pérot instrument at the Dunn Solar Telescope, obtained +0.11 nm from line center. Rapid changes
grossly exceeding the Alfvén speed are commonly seen along the full extent of many chromospheric threads. We
argue that only an optical superposition effect can reasonably explain the data. analogous to striations of curtains
blowing in the wind. Other explanations appear to require significant contrivances to avoid contradicting various
aspects of the data. We infer that the absorbing plasma exists in two-dimensional sheet-like structures within the
three-dimensional magnetofluid, related perhaps to magnetic tangential discontinuities. This interpretation demands
a re-evaluation of basic assumptions about low-f solar plasmas, as advocated by Parker, with broader implications
in astrophysics and plasma physics. Diverse, high-cadence observations are needed to further define the relationship
between magnetic field and thermal fine structure.
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Online-only material: animations
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Evidence for Sheet-like Elementary Structures in the Sun's Atmosphere?
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* no observations

* the review discusses only the theory in “the equation-by-
equation style” and outcomes of numerical simulations

e 7 out of 26 slides of the review present results of the paper:
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ABSTRACT

From radiation magnetohydrodynamic simulations of the solar atmosphere, we find a new mechanism for the
excitation of longitudinal slow modes within magnetic flux concentrations. We find that the convective downdrafts
in the immediate surroundings of magnetic elements are responsible for the excitation of slow modes. The coupling
between the external downdraft and the plasma motion internal to the flux concentration is mediated by the
inertial forces of the downdraft that act on the magnetic flux concentration. These forces, in conjunction with the
downward movement, pump the internal atmosphere in the downward direction, which entails a fast downdraft in
the photospheric and chromospheric layers of the magnetic element. Subsequent to the transient pumping phase, the
atmosphere rebounds, causing a slow mode traveling along the magnetic flux concentration in the upward direction.
[t develops into a shock wave in chromospheric heights, possibly capable of producing some kind of dynamic fibril.
We propose an observational detection of this process.
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Gravity stratification filter out the low-frequency waves.
Magnetic field do much more effect!



Alfvén waves, linear versus non-linear
chromospheric soundspeed
height of bases of dynamic fibrils

magnetoacoustic shock waves versus slow modes
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