# TESS Phase light curves of binaries and search for a close match in a pre-compiled database

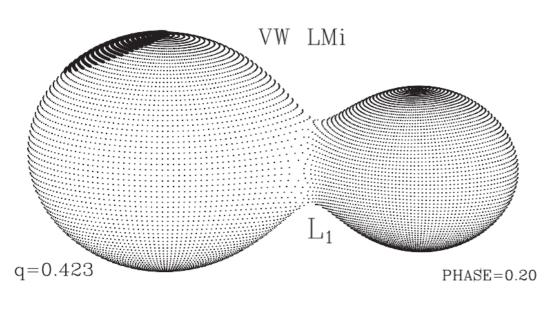


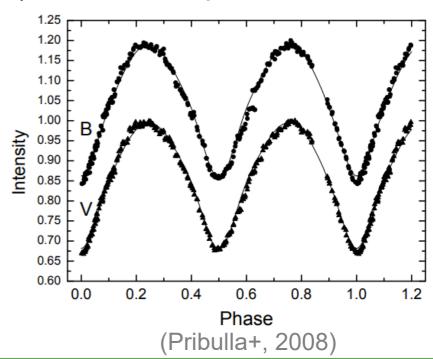
<u>Ľubomír Hambálek</u> with: Andrii Maliuk

June 7, 2025

### **Contact binaries**

- Binary stars with "small" separation of components
- Shape dictated by surface equipotential  $\Omega$  and mass ratio q
- Common evolution
- Circularized orbits with synchronized rotation
- Various fillings of Roche lobes, possible overflows (RLOs)
- If in contact (same  $\Omega$ ) similar (~5%) surface temperature T

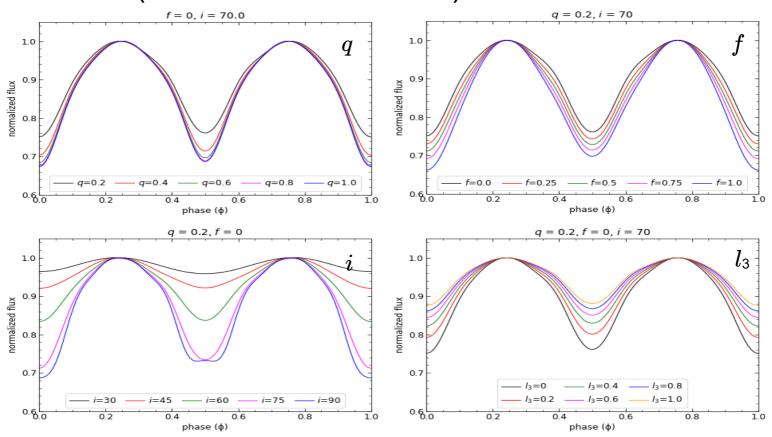




(Djurašević+, 2013)

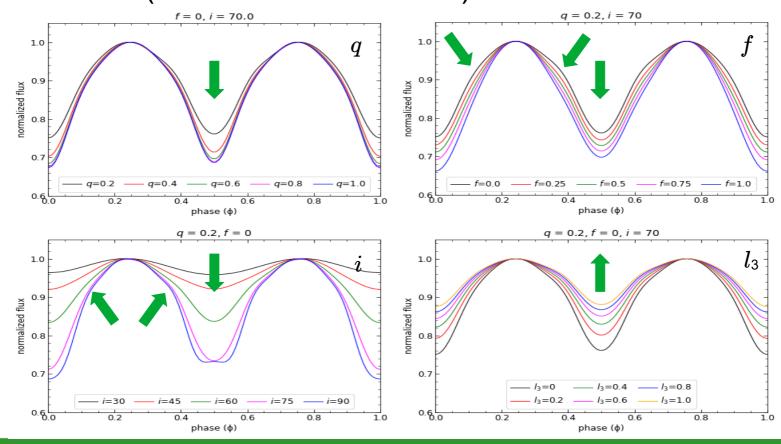
# The "problem" of photometric mass ratio

- Defined as  $q_{\rm ph}$  =  $M_2/M_1$
- Correlates with orbital inclination  $i(\Omega)$ , fill-out  $f(\Omega)$
- Close eclipsing binaries often part of multiple systems  $\rightarrow$ light contamination ( $l_3$  anticorrelates with i)



# The "problem" of photometric mass ratio

- Defined as  $q_{\rm ph}$  =  $M_2/M_1$
- Correlates with orbital inclination  $i(\Omega)$ , fill-out  $f(\Omega)$
- Close eclipsing binaries often part of multiple systems  $\rightarrow$ light contamination ( $l_3$  anticorrelates with i)



# Previously done

- Physical model of stars with ROCHE code (Pribulla, 2012)
- Parameter space:
  - $q \in \langle 0.05, 1.00 \rangle$ ;  $\Delta q = 0.025$
  - $f \in \langle 0.0, 1.0 \rangle$ ;  $\Delta f = 0.25$
  - $i \in < 30, 90 > \deg; \Delta i = 1 \deg$
  - $l_3 \in \langle 0.0, 1.0 \rangle$ ;  $\Delta l_3 = 0.2$

# Previously done

- Physical model of stars with ROCHE code (Pribulla, 2012)
- Parameter space:

• 
$$q \in \langle 0.05, 1.00 \rangle$$
;  $\Delta q = 0.025$  39

• 
$$f \in \langle 0.0, 1.0 \rangle$$
;  $\Delta f = 0.25$  5

• 
$$i \in < 30, 90 > \deg; \Delta i = 1 \deg 61$$

• 
$$l_3 \in \langle 0.0, 1.0 \rangle$$
;  $\Delta l_3 = 0.2$ 



# Previously done

- Physical model of stars with ROCHE code (Pribulla, 2012)
- Parameter space:
  - $q \in \langle 0.05, 1.00 \rangle$ ;  $\Delta q = 0.025$
  - $f \in \langle 0.0, 1.0 \rangle$ ;  $\Delta f = 0.25$
  - $i \in < 30, 90 > \deg; \Delta i = 1 \deg$
  - $l_3 \in \langle 0.0, 1.0 \rangle$ ;  $\Delta l_3 = 0.2$
- Represent the LC with trigonometric polynomial:

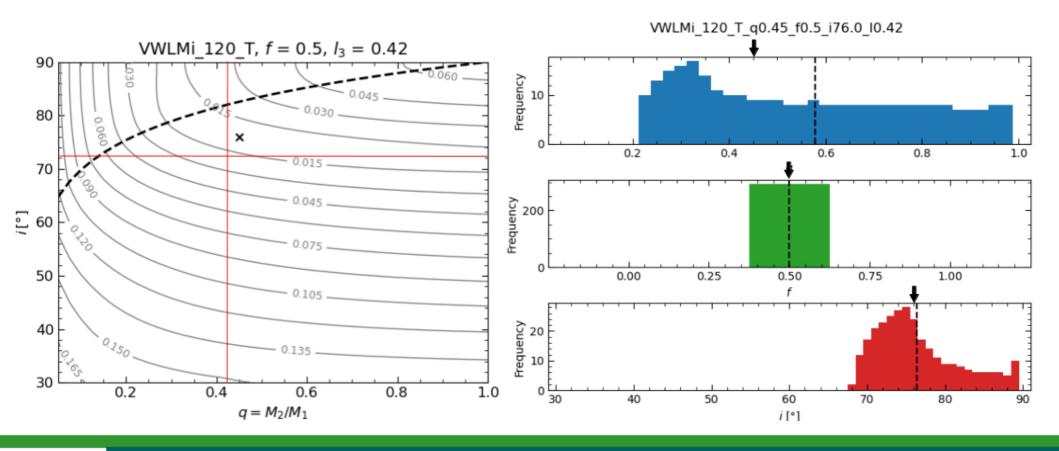
$$I(\varphi) = a_0 + \sum_{k=1}^{n} \cos(a_k) + \sum_{k=1}^{n} \sin(b_k)$$
 (1)

71 370

- Consider only symmetrical LCs around  $\varphi = 0.5 \ (\Rightarrow b_k = 0)$
- Sufficient up to n = 10 (Hambálek & Pribulla, 2013)

### Grid search with real TESS data

- Smoothed LC: Lest-square fit to (1)  $\rightarrow a_k$
- Finding best (x,↓) LCs minimizing D
- Comparison with <u>literature values</u>



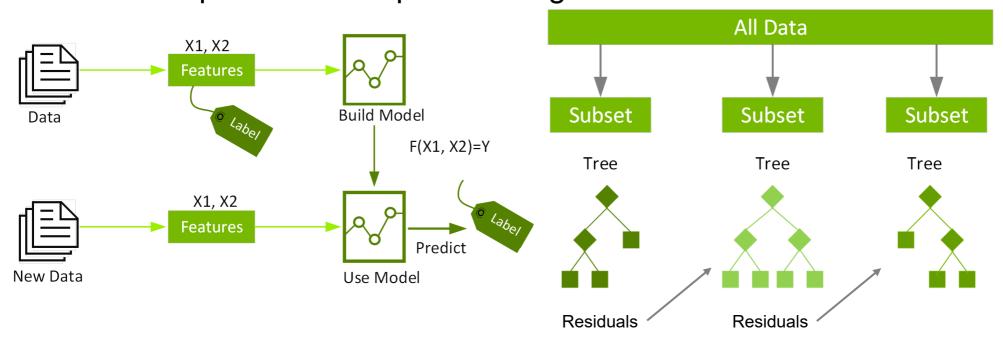






# Can we try better?

- Simple model using scikit-learn, XGBoost, and tensorflow
- XGBoost for high-performance, sequence of decision trees
- Model predicts by evaluating a tree of if-then-else true/false questions (trees)
- Each tree corrects errors of previous one possible non-linear relationships between input and target variables



# Training

- Training data: 70% random of full set of 71 370 LCs as  $a_k$
- Test data: the rest 30%
- By trial/error ⇒ max\_depth = 7
- $i \in \langle 30, 90 \rangle \deg \rightarrow \sin(i) \in \langle 0.5, 1 \rangle \text{ since } q, f, l_3 \in \langle 0.0, 1.0 \rangle$

|       | a0       | a1        | a2        | a3        | a4        | a5        | a6        | a7        | a8        | a9        | a10       | q    | f   | i    | 13  |
|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----|------|-----|
| 0     | 0.988591 | 0.003461  | -0.010768 | -0.001055 | 0.000191  | -0.000014 | 0.000013  | 0.000010  | 0.000003  | 0.000002  | 0.000003  | 0.05 | 0.0 | 30.0 | 0.0 |
| 1     | 0.987924 | 0.003387  | -0.011394 | -0.001163 | 0.000223  | -0.000019 | 0.000026  | 0.000007  | -0.000001 | 0.000006  | 0.000004  | 0.05 | 0.0 | 31.0 | 0.0 |
| 2     | 0.987232 | 0.003301  | -0.012032 | -0.001269 | 0.000262  | 0.000002  | 0.000039  | 0.000000  | 0.000001  | -0.000008 | 0.000007  | 0.05 | 0.0 | 32.0 | 0.0 |
| 3     | 0.986539 | 0.003180  | -0.012673 | -0.001383 | 0.000315  | 0.000017  | 0.000057  | 0.000006  | 0.000002  | 0.000002  | 0.000000  | 0.05 | 0.0 | 33.0 | 0.0 |
| 4     | 0.985849 | 0.003076  | -0.013328 | -0.001490 | 0.000373  | 0.000032  | 0.000057  | 0.000013  | 0.000001  | 0.000012  | -0.000007 | 0.05 | 0.0 | 34.0 | 0.0 |
|       |          |           |           |           |           |           |           |           |           |           |           |      |     |      |     |
| 71369 | 0.856721 | -0.003366 | -0.155882 | -0.001025 | -0.019322 | -0.000706 | -0.010762 | -0.000431 | -0.006175 | -0.000255 | -0.003522 | 1.00 | 1.0 | 90.0 | 1.0 |

71370 rows × 15 columns

# Training

- Training data: 70% random of full set of 71 370 LCs as  $a_k$
- Test data: the rest 30%
- By trial/error ⇒ max\_depth = 7
- $i \in \langle 30, 90 \rangle \deg \rightarrow \sin(i) \in \langle 0.5, 1 \rangle \text{ since } q, f, l_3 \in \langle 0.0, 1.0 \rangle$

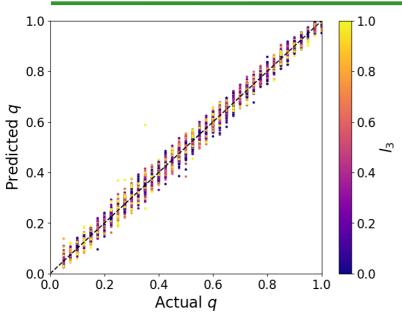
|       | a0       | a1        | a2        | a3        | a4        | a5        | a6        | a7        | a8        | a9        | a10       | q    | f   | i    | 13  |
|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----|------|-----|
| 0     | 0.988591 | 0.003461  | -0.010768 | -0.001055 | 0.000191  | -0.000014 | 0.000013  | 0.000010  | 0.000003  | 0.000002  | 0.000003  | 0.05 | 0.0 | 30.0 | 0.0 |
| 1     | 0.987924 | 0.003387  | -0.011394 | -0.001163 | 0.000223  | -0.000019 | 0.000026  | 0.000007  | -0.000001 | 0.000006  | 0.000004  | 0.05 | 0.0 | 31.0 | 0.0 |
| 2     | 0.987232 | 0.003301  | -0.012032 | -0.001269 | 0.000262  | 0.000002  | 0.000039  | 0.000000  | 0.000001  | -0.000008 | 0.000007  | 0.05 | 0.0 | 32.0 | 0.0 |
| 3     | 0.986539 | 0.003180  | -0.012673 | -0.001383 | 0.000315  | 0.000017  | 0.000057  | 0.000006  | 0.000002  | 0.000002  | 0.000000  | 0.05 | 0.0 | 33.0 | 0.0 |
| 4     | 0.985849 | 0.003076  | -0.013328 | -0.001490 | 0.000373  | 0.000032  | 0.000057  | 0.000013  | 0.000001  | 0.000012  | -0.000007 | 0.05 | 0.0 | 34.0 | 0.0 |
|       |          |           |           |           |           |           |           |           |           |           |           |      |     |      |     |
| 71369 | 0.856721 | -0.003366 | -0.155882 | -0.001025 | -0.019322 | -0.000706 | -0.010762 | -0.000431 | -0.006175 | -0.000255 | -0.003522 | 1.00 | 1.0 | 90.0 | 1.0 |

71370 rows × 15 columns

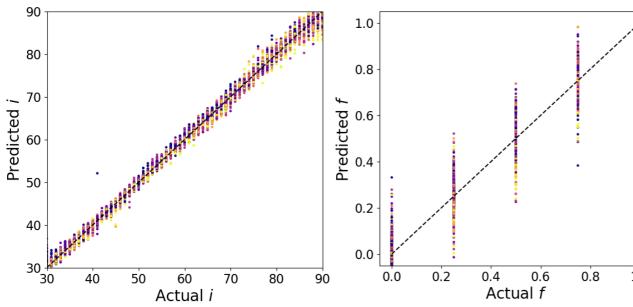
# Model performance – random forest

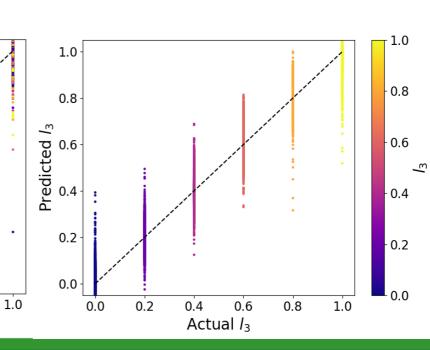


# Model performance – XGBoost



| RMS                   | Training set | Test set |
|-----------------------|--------------|----------|
| q                     | 0.0108       | 0.0151   |
| f                     | 0.0245       | 0.0408   |
| sin(i)                | 0.0037       | 0.0057   |
| <i>l</i> <sub>3</sub> | 0.0388       | 0.0562   |

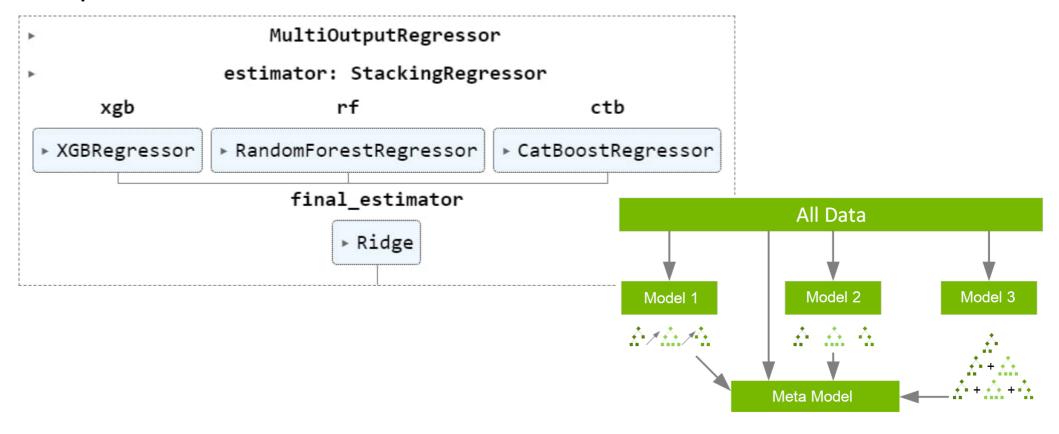




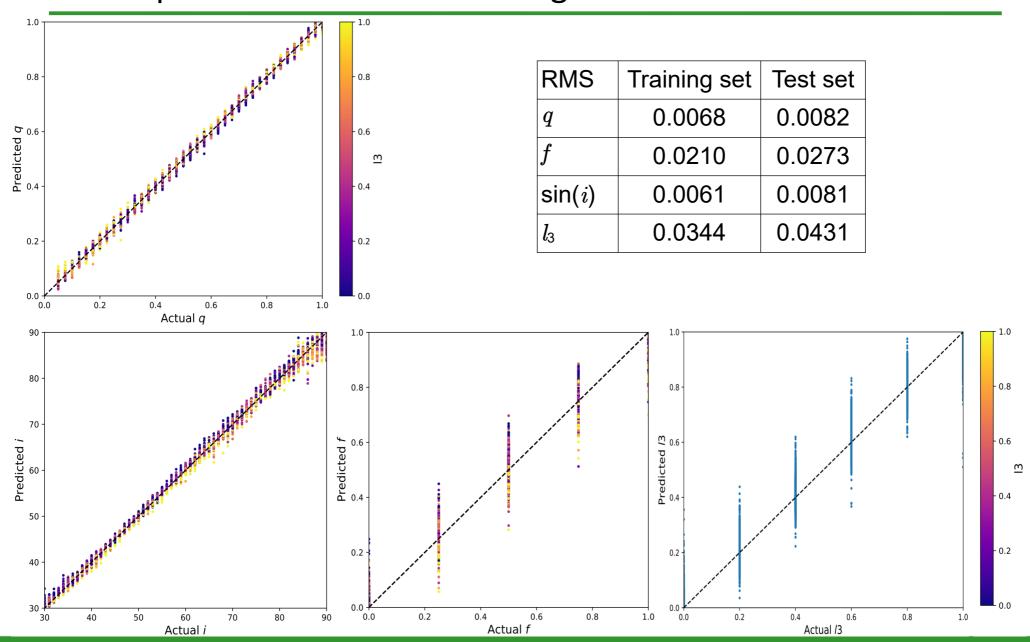
# Next try - stacked models



- Using MultiOutputRegressor
- Combine previous Random forest with XGBoost add CatBoost
- Ridge regression used best for multicollinear data or if number of predictor variables > number of observations.



# Model performance – Stacked Regressor



• Selected 14 stars with full range of  $q_{sp} \in <0.066,0.984>$ 

| star      | $q_{ m L}$    | $f_{ m L}$   | $i_{ m L}$  | $l_{3,\mathrm{L}}$ | type    |
|-----------|---------------|--------------|-------------|--------------------|---------|
|           |               |              | $[\deg]$    |                    |         |
| AG Vir    | $0.341^{a}$   | $0.17^{b}$   | $84^{b}$    | $0.05^{a}$         | EW A    |
| AW UMa    | $0.108^{c}$   | $0.30^{c}$   | $78^{d}$    | $0.00^{c}$         | EW      |
| DU Boo    | $0.206^{b}$   | $0.56^{\ b}$ | $81^{\ b}$  | $0.00^{\ b}$       | EW A    |
| EL Boo    | $0.248^{d}$   | $0.00^{e}$   | $74^{e}$    | $1.00^{f}$         | EW      |
| EQ Tau    | $0.442^{g}$   | $0.09^{e}$   | $82^{e}$    | $0.00^{g}$         | EW A    |
| FI Boo    | $0.372^{h}$   | $0.50^{i}$   | $38^{i}$    | $0.30^{h}$         | EW W    |
| FT~UMa    | $0.984^{\ f}$ | N/A          | $60(3)^{j}$ | $1.01^{f}$         | EB      |
| SW Lac    | $0.776^{k}$   | ?            | ?           | $< 0.05^{k}$       | EW W    |
| SX Crv    | $0.066^{g}$   | ?            | $65(5)^{g}$ | $0.00^{g}$         | EW A    |
| V1191 Cyg | $0.107^{l}$   | $0.30^{\ m}$ | $83(2)^{m}$ | $0.00^{\ l}$       | EW W    |
| V523 Cas  | $0.516^{\;n}$ | $0.00^{o}$   | $84(1)^{o}$ | $0.00^{\ n}$       | EW W    |
| V753  Mon | $0.970^{p}$   | N/A          | $75^{q}$    | $0.00^{p}$         | EB      |
| VW LMi    | $0.423^{\:a}$ | $0.47^{r}$   | $79^{s}$    | $0.42^{a}$         | $EW\ W$ |
| W UMa     | $0.484^{\ t}$ | $0.10^{u}$   | $86^{u}$    | $0.00^{\ t}$       | EW      |

Source: <sup>a</sup>Pribulla et al. (2006), <sup>b</sup>Pribulla et al. (2011), <sup>c</sup>Pribulla & Rucinski (2008),

<sup>&</sup>lt;sup>d</sup>Pribulla & Rucinski (2006), <sup>e</sup>Deb & Singh (2011), <sup>f</sup>Pribulla et al. (2009),

<sup>&</sup>lt;sup>g</sup>Rucinski et al. (2001), <sup>h</sup>Lu et al. (2001), <sup>i</sup>Christopoulou & Papageorgiou (2013),

<sup>&</sup>lt;sup>j</sup>Yuan (2011), <sup>k</sup>Rucinski et al. (2005), <sup>l</sup>Rucinski et al. (2008),

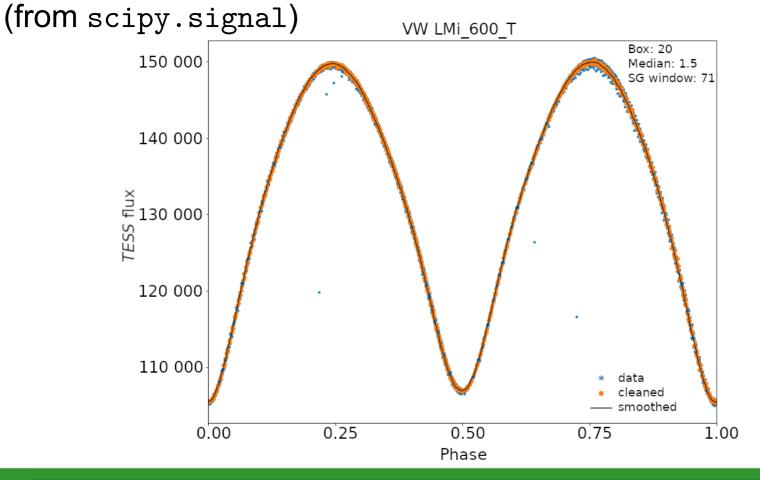
<sup>&</sup>lt;sup>m</sup>Ekmekçi et al. (2012), <sup>n</sup>Rucinski et al. (2003), <sup>o</sup>Mohammadi et al. (2016),

<sup>&</sup>lt;sup>p</sup>Rucinski et al. (2000), <sup>q</sup>Qian et al. (2013), <sup>r</sup>Sánchez-Bajo et al. (2007),

<sup>&</sup>lt;sup>s</sup>Pribulla et al. (2008), <sup>t</sup>Pribulla et al. (2007), <sup>u</sup>Linnell (1991).

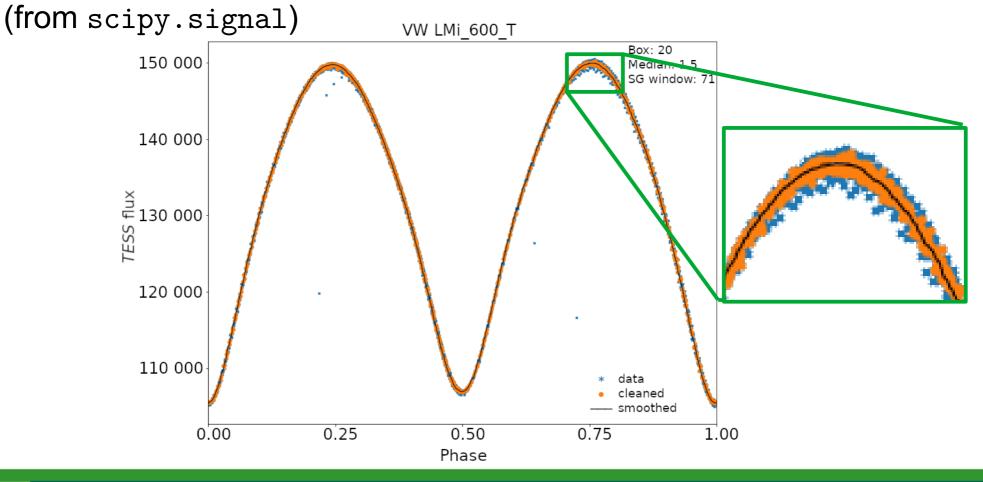
- Selected 14 stars with full range of  $q_{sp} \in <0.066,0.984>$
- LCs obtained by lightkurve (SPOC flux) → phase LC by period

Running box outlier removal, smoothed by Savitzky-Golay filter

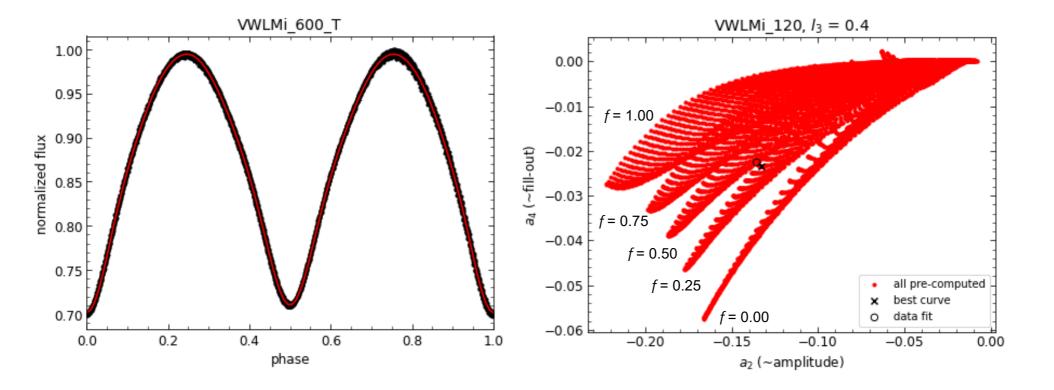


- Selected 14 stars with full range of  $q_{sp} \in <0.066,0.984>$
- LCs obtained by lightkurve (SPOC flux) → phase LC by period

Running box outlier removal, smoothed by Savitzky-Golay filter



- Smoothed LC: Lest-square fit to (1)  $\rightarrow a_k$
- Finding best (x, ↓) LCs minimizing D

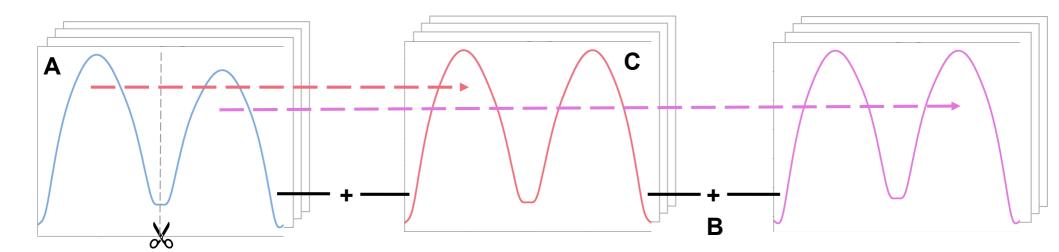


### Subsets of real data

- U = Previous predictions from matching with pre-computed library (code UNIQUE)
- M = New predictions from XGBoost (Machine learning)

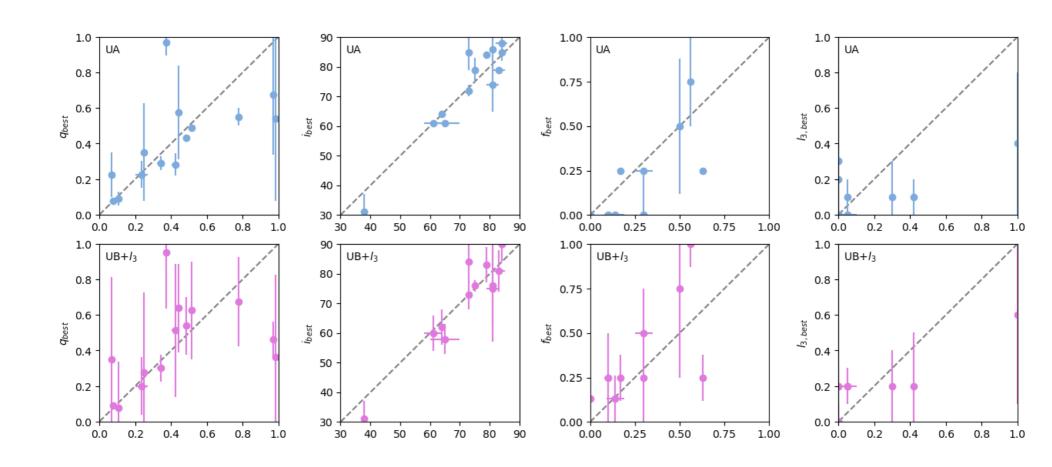
### Subsets of real data

- U = Previous predictions from matching with pre-computed library (code UNIQUE)
- M = New predictions from XGBoost (Machine learning)
- A = Initial set from *TESS*
- **B** = A + artificially symmetric LCs by mirroring at  $\varphi$  = 0.5
- C = A + subset of B with only LCs with higher peak mirrored ("no spot")

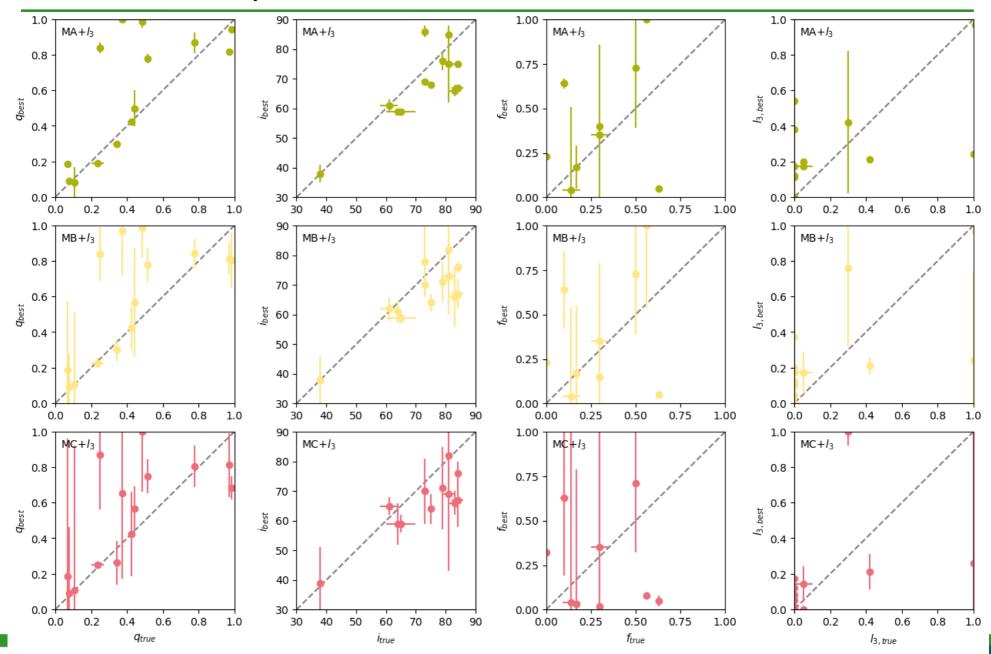


# Results - correspondence

• predicted values (y-axis) vs actual values (x-axis)

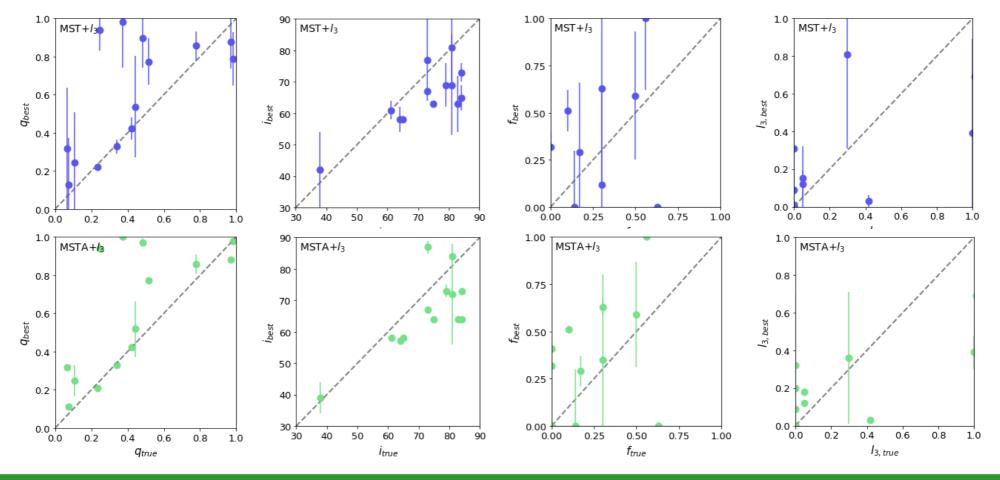


# Results - correspondence



# Results - correspondence

- **ST** = stacked models
- MST stacked models, **C** dataset
- MSTA stacked models, **A** dataset



# Results – weighted correlation

- **U** = matching with pre-computed library
- **M** = New predictions from XGBoost
  - A = Initial set from *TESS*
  - **B** = **A** + artificially symmetric LCs by mirroring at  $\varphi$  = 0.5
  - C = A + only LCs with higher peak mirrored ("no spot")
- MST stacked models, **C** dataset
- MSTA stacked models, A dataset

| model      | q     | i     | f      | $l_3$  |
|------------|-------|-------|--------|--------|
| UA         | 0.978 | 0.955 | 0.708  | 0.083  |
| $UB + l_3$ | 0.857 | 0.973 | 0.573  | 0.547  |
| $MA+l_3$   | 0.787 | 0.952 | -0.548 | 0.096  |
| $MB+l_3$   | 0.839 | 0.896 | -0.618 | 0.759  |
| $MC+l_3$   | 0.897 | 0.853 | -0.702 | 0.999  |
| $MST+l_3$  | 0.806 | 0.998 | -0.846 | 0.458  |
| $MSTA+l_3$ | 0.748 | 0.864 | 0.342  | -0.089 |

# Results – predictions of mass ratio

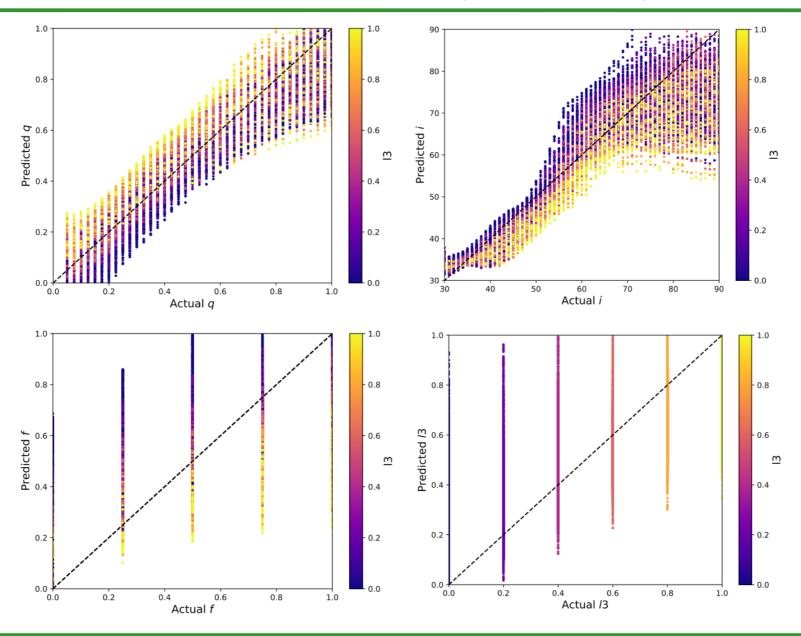
• best predictions of q in different models with [ (max - min)/2 ]

| Object    | qtrue     | UA         | UB+l <sub>3</sub> | $MA+l_3$   | $MB+l_3$   | $MC+l_3$   | MST+l <sub>3</sub> | $MSTA+l_3$ |
|-----------|-----------|------------|-------------------|------------|------------|------------|--------------------|------------|
| AG Vir    | 0.341(21) | 0.288[38]  | 0.300[75]         | 0.296[8]   | 0.300[62]  | 0.261[123] | 0.328[36]          | 0.328[5]   |
| AW UMa    | 0.075(5)  | 0.075[0]   | 0.088[13]         | 0.089[10]  | 0.089[187] | 0.089[374] | 0.126[245]         | 0.111[4]   |
| DU Boo    | 0.234(35) | 0.225[75]  | 0.200[163]        | 0.190[0]   | 0.226[30]  | 0.250[0]   | 0.219[19]          | 0.209[0]   |
| EL Boo    | 0.248(7)  | 0.350[275] | 0.275[450]        | 0.839[30]  | 0.839[153] | 0.869[306] | 0.941[109]         | 0.941[20]  |
| EQ Tau    | 0.442(10) | 0.575[263] | 0.638[250]        | 0.498[103] | 0.566[308] | 0.566[126] | 0.537[265]         | 0.518[114] |
| FI Boo    | 0.327(9)  | 0.970[75]  | 0.950[313]        | 1.000[5]   | 0.970[252] | 0.651[481] | 0.981[240]         | 1.000[9]   |
| FT UMa    | 0.984(19) | 0.538[463] | 0.363[463]        | 0.941[14]  | 0.802[153] | 0.682[65]  | 0.788[139]         | 0.979[16]  |
| SW Lac    | 0.776(14) | 0.550[50]  | 0.675[250]        | 0.867[57]  | 0.843[82]  | 0.804[115] | 0.856[74]          | 0.858[50]  |
| SX Crv    | 0.066(3)  | 0.225[125] | 0.350[463]        | 0.186[0]   | 0.186[388] | 0.186[776] | 0.318[319]         | 0.318[0]   |
| V1191 Cyg | 0.107(5)  | 0.089[38]  | 0.075[263]        | 0.083[85]  | 0.105[408] | 0.105[814] | 0.245[264]         | 0.248[81]  |
| V523 Cas  | 0.516(8)  | 0.488[13]  | 0.625[275]        | 0.777[25]  | 0.777[98]  | 0.747[94]  | 0.774[121]         | 0.774[8]   |
| V753 Mon  | 0.970(11) | 0.675[338] | 0.463[100]        | 0.817[9]   | 0.812[90]  | 0.812[180] | 0.878[142]         | 0.882[3]   |
| VW LMi    | 0.423(21) | 0.281[63]  | 0.513[375]        | 0.422[0]   | 0.422[119] | 0.422[238] | 0.424[58]          | 0.424[0]   |
| W UMa     | 0.484(3)  | 0.433[13]  | 0.538[163]        | 0.985[32]  | 0.985[170] | 1.000[339] | 0.896[154]         | 0.972[20]  |

### Done so far...

- Based on training stacked model looks as best approach
- Very small sample to proof concept
- Need for larger ensemble of sectors, individual LCs of the same object
- Better predictions for systems with total eclipses
- Further analysis of O'Connell effect, shapes of minima of Lcs
- Represent LCs in phases rather than trigonometric polynomials
- *TESS* vs. V-band, small bins of f,  $l_3$  needs new training sample
- •
- Use neural network as meta-model

# Done so far... Initial neural network prediction "power"



# New grid generation for training

Physical model of stars with PHOEBE code (Prša, 2011) Parameter space:

| $q \in \langle 0.05, 1.00 \rangle;$       | $\Delta q = 0.025$           | 39 |
|-------------------------------------------|------------------------------|----|
| $f \in \langle 0.05, 0.95 \rangle;$       | $\Delta f = 0.1$             | 10 |
| $i \in < 30, 90 > \deg;$                  | $\Delta i = 1.5 \deg$        | 41 |
| $T_1 \in \langle 4 100, 9 600 \rangle K;$ | $\Delta T_1 = 250 \text{ K}$ | 23 |
| $T_2/T_1 \in \langle 0.5, 1.0 \rangle;$   | $\Delta T_2/T_1=0.05$        | 11 |

# New grid generation for training

Physical model of stars with PHOEBE code (Prša, 2011) Parameter space:

| $q \in \langle 0.05, 1.00 \rangle;$       | $\Delta q = 0.025$      | 39 |           |
|-------------------------------------------|-------------------------|----|-----------|
| $f \in \langle 0.05, 0.95 \rangle;$       | $\Delta f = 0.1$        | 10 |           |
| $i \in < 30, 90 > \deg;$                  | $\Delta i = 1.5 \ deg$  | 41 | 4 045 470 |
| $T_1 \in \langle 4 100, 9 600 \rangle K;$ | $\Delta T_1 = 250 \; K$ | 23 |           |
| $T_2/T_1 \in \langle 0.5, 1.0 \rangle;$   | $\Delta T_2/T_1=0.05$   | 11 |           |

# Efficiency

### Other considerations:

- Still symmetrical LCs around  $\varphi = 0.5 \ (\Rightarrow b_k = 0)$  generate ½ LC
- NO LC fit with (1) each represented by 65 phase points
- Eclipse regions 2x higher bin density

Add steps via interpolation between i parameters while all others fixed  $\rightarrow$  final library almost 2-times bigger

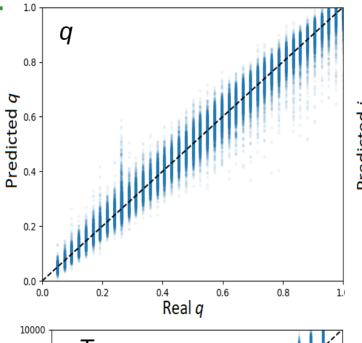
- PCA applied to reduce dimensionality and retain the most significant variations in the data 20 principal components with 99.9% of the total variance.
- Reduced complexity, noise, redundancy and higher efficiency

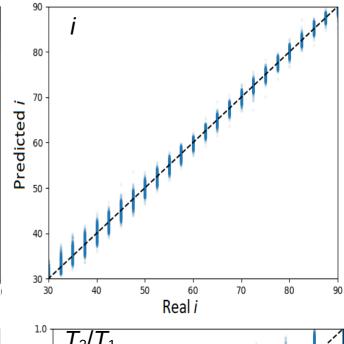
# New regressor

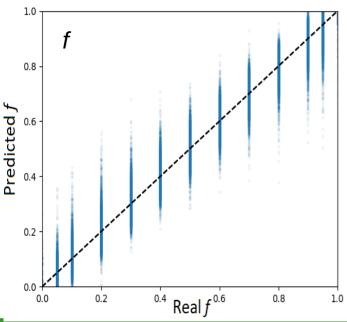
- Using MultiOutputRegressor
- Combine previous Random forest with XGBoost add CatBoost
- Ridge regression used best for multicollinear data or if number of predictor variables > number of observations.
- XGBoost configured with max\_depth=16, learning\_rate=0.4, and strong reg\_lambda=500, enabling it to capture complex patterns while controlling overfitting.
- CatBoost used with the MultiRMSE loss function, tree\_depth=12, and a low learning rate of 0.015, offering high accuracy and robustness to feature noise.
- Random forest regularized via ccp\_alpha=0.1 and parallelized with n\_jobs=8 to optimize training speed and generalization.

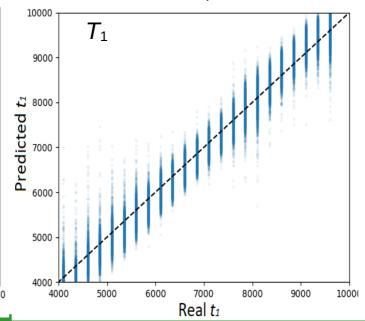
# New regressor

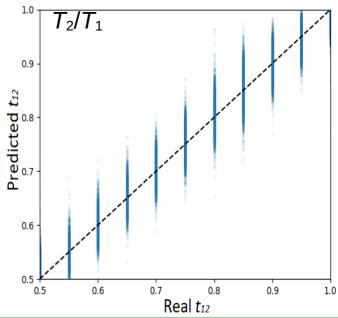
| RMS                 | Training set | Test set |  |  |
|---------------------|--------------|----------|--|--|
| q                   | 0.0250       | 0.0251   |  |  |
| f                   | 0.0352       | 0.0352   |  |  |
| $i  [\mathrm{deg}]$ | 0.5679       | 0.5666   |  |  |
| $T_1[K]$            | 190.88       | 191.07   |  |  |
| $T_2/T_1$           | 0.0171       | 0.170    |  |  |



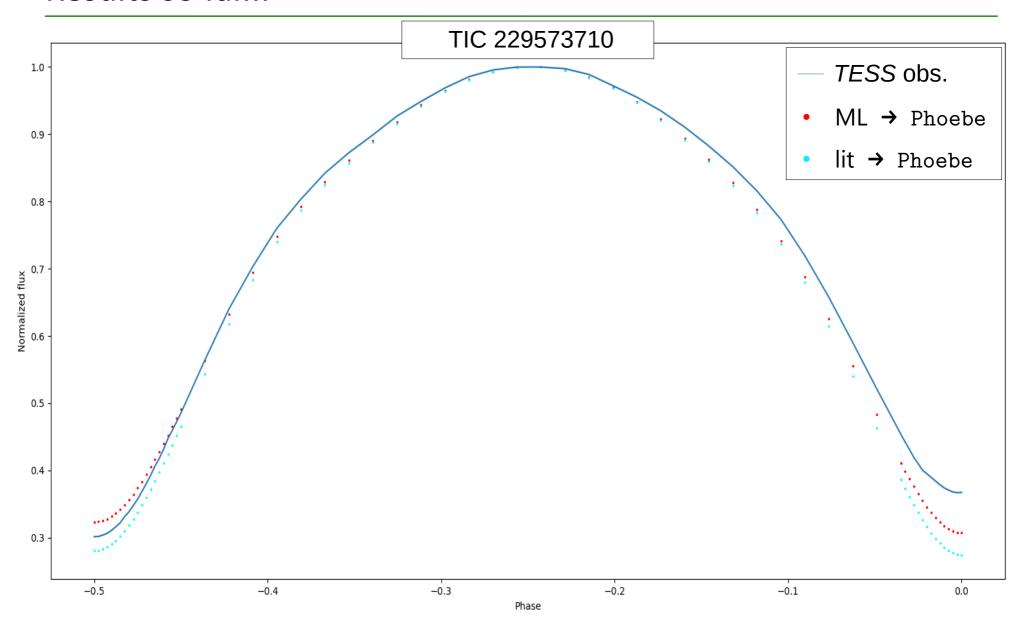








# Results so far...



# TESS Phase light curves of binaries and search for a close match in a pre-compiled database



# Thank you!

This work was supported by grants: APVV-20-0148 and VEGA 2/0031/22



