Highlights of the solar research in the last decades: *Convergence* or *divergence*?

Michal Švanda

Astronomical Institute, Charles University, Prague Astronomical Institute, Academy of Science, Ondřejov

Why do we study the Sun?

- It is a star
 - One of many
 - Very close = spatial resolution
- The distant laboratory of an extreme plasma physics
 - Interaction of plasma with magnetic field
- It is active
 - Solar activity may easily disturb our everyday's life

Knowns and unknowns

What do we know?

- □ Internal stucture: pretty certain, subject to change of details
- Atmospherics structure: to a very good detail
- Evolution: both past and future
- Empirical rules of the solar magnetism
- What don't we know?
 - Chemical composition: some doubts
 - Convection and internal dynamics: a big puzzle!
 - Solar dynamo: how and why does it work?
 - Long-term solar activity: not fully understood
 - Heating of the solar atmosphere: which agent has a dominant role?

The Sun: our closest star

How comes we know?

- Internal structure of stars described by equations (differential, partial)
 - Solutions possible
 - Various models agree quite well
- Solar analogues
 - Similar stars in a different evolutionary states or with (slightly) different fundamental parameters

Verify the models

Helioseismology

d m Gm $4\pi\rho r^2(\epsilon+1)$ $\frac{-GmT\rho}{P}r$ rad = dTdr $P = \frac{\Re \rho T}{...}, \mu =$

The Sun oscillates

- Triggers: convective instability
 - The convection is vigorous, hence plenty of opportunities to excite waves
- Various types according to the restoring force
- Resonance
 - Depth localisation
 - Only certain modes prevail
 - Trapped waves

- g: internal gravity in convectively stable
- p: pressure in convectively instable environment
- f: surface gravity similar to ocean waves

k-ω (l-ν) diagram

- Discovery 1960s
- Interpretation 1970s
- First inversions 1980s
- Golden era 1995-2010

Solar oscillations seen in intensity

SDO/HMI, 12. May 2010, 00:00-06:00 UT, disc centre

Waves only

180 Mm

Local helioseismology

- Local helioseismology: analysis of non-standing travelling waves
- They meet anomalies
 Output to the wave properties
 - Change of the wave properties
- Frequency shifts
- Travel-times (and their shifts)
- Sounding due to the artificial selection of the modes
- Inverse task possible (not simple though)

Travel-time deviations map

Principial results: Plasma dynamics

- Sub-surface plasma dynamics is multiscale
 - Convection
 - Large-scale motions
 - Rotation
 - Meridional flow
- Deeper than 30 Mm the findings are fuzzy
- Other findings also important

But deeper down...

- Comparison of the simulations and observations does not work
- Issue with the description of the convection?

Composition matters

- Helioseismology is based on models: the models depend (strongly) on chemical composition
- Chemical compositon is *not* measured, but *derived* (based on measurements)

Methodology matters

Iron Sun?

- Simple approach: the Sun is made of metals, mostly iron
 - Many metal spectral lines in the photosphere
 - Iron-like elements have many electrons opacity sources
- Ionisation and excitation equilibria matter!
 - Cecilia Payne (1925)
 - In the solar photosphere the temperature is "low" to excite hydrogen, hence limited hydrogen lines

Microphysics matters

- Opacity = ability to interact with the electromagnetic radiation
 - Wavelength dependent
 - Abundances dependent
 - Matter-light interaction dependent
 - Effective cross-sections, quantum physics
- Coupling of abundances and opacity non-trivial
 - Cross-sections measured or modelled
 - Reasonable knowledge for H, worse for He, good for H-like atoms, disaster for the heavy ions
 - Opacity inaccuracies in tens of per cents
 - Internal structure of the stars depend in details on the abundances
- □ Since about 2000 big revisions
 - Disagreement with meteorites and surrounding stars (indicating lower Z)

Departures from 1-D models

- The Sun convective cells on the surface
 - Not flat (hence non-1D)
 - Spectral line influenced by the positions

Revisions of the spectral lines

- Hidden blends are the issue
- Non-equilibrium effects

Difference for the Fe I and Fe II

"New" solar abundances

- "Metal" abundances corrected, decrease of C, O, Ne
 Z=0,0143
- Now agrees with meteorites
- Agreement with the stars in the neighborhood
- Agrees with high-resolution observations
- Issues for helioseismology
 - Disagreement huge
 - Convective overshoot ?
 - □ ? Additional mixing ?

Z-machine

- Governmental device to explore X-rays and their effects on matter (otherwise it is part of the research with a military value and pulse-driven hydrogen fusion)
- Opacities can be measured

Iron has a larger opacity...

... than expected

Actual composition of the Sun

- 🗖 H + He
- □ Z < 0.015
- Lithium underabundant
 - Issues with models
 - Other stars richer in helium
 - Older stars seem to have lesser Li
 - Non-convective mixing that helps to destroy Li?

Back to the roots

- The Sun is too complicated to be properly described
- Indices of activity
 - A single number describing an overall level of activity at the given time
 - Good for describing the time evolution
 - Some physically motivated
 - Some "logical" (common sense)
 - □ Some arbitrary

Drawing the Sun...

Relative sunspot number

R. Wolf (1851) combined number of sunspots and number of groups into one

R = 10g + f

 Systematic observation, own network to fill in the gaps

Explored historical records

	ł.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.	X.	XI.	XII.
1	9.31	3. 6	3	10.70	9.30	8.48	4.13	4 15	7.64	8.10	5.16	
$\frac{1}{2}$	9.34	7.40	5	7	9.40	9.64	3. 3	6.18	5.35	7.10	7.41	8.9
3	15	2	6.12	10.38	5.12	8 50	3.6	6.15	4.27	3.4	3.10	8.17
4	9.31	7.27	7.15	12.58	7.45	10.50	3 1 0	4.12	5.41	2.3	4.31	-
5	9	9.22	2	8.20	8 50	8.45	7	5.20	1. 1	1. 2	_	9.47
6	s. —	10 34	7.24	10.60	7.38	7.45	4.8	4.18	6.25	4.6	—	2. 2
7		3	3	8.24	1	5	5.10	3.20	7.48	—	6.22	-
8	8.28	10.21	4	6.20	6.20	5.12	615	3.15	5.38	5.16	7.35	
9	8.30	10.35	3>	9.45	6.25	3	7.20	414	7.50	5.26	6.20	-
10	-		2	2	2	3	3.6	5.27	9.26		-	
11		8.20	5.20	6.24	4.10	1	2.4	5.32	7.25	2.5	-	
12	7.28	9.56	7.30	-	1.2	5.12	3.8	7.25	6	-	-	
13	-	11.6%	-	5.14	0.0	5.14	4.10	7.24	4.40	4.26	5.11	3.22
14	-	7	7.22	5 16	5.16	6.14	3,12	6.15	5.15	-	6.22	3.12
15	4. —	2.2	6.23	5.10	4	4.8	3.12	6 14	9.59	-	5.20	4.19
16	5	6	-	2.2	4.25	3.4	7.45	7.21	7.54	3.5	- 1	3. 5
17	9.25	15.40	4.14	2	-	4.8	8.40	6	6.32	4.21	-	5.22
18	11.60	8	7.30	5	4.30	5.35	9.30	6.30	5.19	4.25	2.22	7.37
19	10.25	11.36	4	6.25	2. 2	5.35	7.22	5.26	3.9	6.56	5.25	6.10
20	11.74	13.60	5.30	6.11	3.42	2.5	7.22	3. 5	4.26	6.41	7.47	4.5
21	12.75	12	530	-	3.22	4.42	7.15	5.10	6.24	8.36	6.16	2.2
22	9.46	10.21	6.35	636	3.28	0.56	6.0	4.4	7.28		-	- 1
23	10	11.58	-	3.12	4.25	5.38	5,12	4.7	7.34	7.49	-	- 1
24	10	11.40	_	2.10	3.8	2	5. 9	3.4	7.23	5. 8	-	
25	10.05	10.68	3	5.30	6.20	5.30	7.14	3.10	5.22	4.4	- 1	11.43
26	10.76	10.35	-	4.10	0.12	4.25	4.0	5.20	5.15	-	0.00	6.13
27	10.95	2	4	6.44	0.20	2.15	0.1	0.21	8.10		9.08	-
28	9.05	7.36	12.50	9.0	6.00	2.10	7.20	0.10	9.10	3. 4	11.72	57 P.50
29	0.02		0.24	3.20	0.10	4.0	8.90	+.24 5.96	0.17	5.11	14 50	0.02
30	9	1	3.51	3.20	6 10	1.1	6.20	6.45	5.17	5.46	11.52	4.11
51	-		11.58		0.10		0.10	0.40		5.10		-
Mittel.	144,0	128,1	100,7	87,9	83,3	88,1	80,4	67,5	92,6	82,0	96,4	92,1

Sonnenfleckenbeobachtungen im Jahre 1849.

THE issue: one observer

- One observer = one place on Earth = data series must have gaps
- □ To complete let's involve other observers
 - Different experience
 - Different condition
 - Different telescope
 - □ They observe the same Sun, but yet, their numbers are different
 - Conversion ("calibration") simplest possible $R_i = k (10g + f)$
 - k is the personal coefficient
- Total series: the composite

World-wide composited

- Reference station
 - SIDC
 - Historically the "backbone" method
- Simple average
 - Sensitive to outliers
 - Local networks (ČAS)
- Weighted average
 - AAVSO ("american" relative number]
 - The weights indicate the "quality" of the observers
- Iterative algorithm
 - □ *k* coefficients based: those are computed first
 - The the dayli average with new coefficients
 - WDC-SILSO

2015 and on

- Schizophrenia of the relative number
- Various disagreements between various "official" datasets
- Systematic errors and biases discovered
 - Working group to identify and correct those
 - New sunspot number S_N

It's not the final answer!

- Versioning system
- The work goes on

- Paradox: The longest running solar observation (methodology from the medieval times) seem to have issues even in the modern (computerised) era!
- □ Is has effects (on dynamo investigation, climate forcing, ...)
- How can we trust details if the overall picture is unsure?

Open questions

- Solar physics has a future
- The devil is hidden in the details
- Many (re)open(ed) questions
 - Character of the convection (influences stellar physics)
 - □ Solar cycle, periodic and aperiodic components
 - Coronal heating
 - Acceleration of the solar wind
 - Details of solar flares and their effects
 - Sun-Earth relations
 - and others...

