Evolution of Stellar structures in the Galactic Centre

Myank Singhal

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)
- Longitude of ascending node (Ω)

Pericenter

- Orientation of particle
- Augment of pericenter (ω)
- True anomaly (ν)

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)

- Longitude of ascending node (Ω
- Orientation of particle
- Augment of pericenter (ω)
- True anomaly (ν)

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)

- Longitude of ascending node (Ω)
- Orientation of particle
- Augment of pericenter (ω)
- True anomaly (L)

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)
- Longitude of ascending node (Ω)
- Orientation of particle
- Augment of pericenter (ω)
- True anomaly (V)

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)
- Longitude of ascending node (Ω)
- Orientation of particle
- Augment of pericenter (ω)
- True anomaly ($工$)

Keplerian Orbital Elements

- Shape of orbit:
- Semi-major axis (a)
- Eccentricity (e)
- Orientation of plane:
- Inclination (i)
- Longitude of ascending node (Ω)
- Orientation of particle
- Augment of pericenter (ω)
- True anomaly (ν)

Kozai-Lidov Oscillations

- A binary system perturbed by a massive body.

- Angular momentum of binary is no longer conserved.
- $M_{S M B H}=4 \cdot 10^{6} M_{\odot}$
$M_{C W D}=10^{4} M_{\odot}$
$R_{C W D}=0.1 p c$
$M_{\text {test }}=10 M_{\odot}$
$R_{\text {test }}=2.2 \cdot 10^{-2} p c$

Kozai-Lidov Oscillations

- Oscillations damped due to spherically symmetric externa potential.
- External potential can be
- extended stellar cusp.
- relativistic corrections to newtonian dynamics.
- $M_{\text {SMBH }}=4 \cdot 10^{6} M_{\odot}$

$$
\begin{aligned}
& M_{\text {test }}=10 M_{\odot} \\
& R_{\text {test }}=1.5 \cdot 10^{-2} p c \\
& M_{C W D}=10^{4} M_{\odot} \\
& R_{C W D}=0.1 p c
\end{aligned}
$$

VHS Mechanism

Haas, Šubr \& Vokrouhlický (2011)

- Four body system
- Central massive body ($\left.M_{S M B H}=3.5 \cdot 10^{6} M_{\odot}\right)$
- 1 massive perturber on circular orbit. ($\left.M_{C N D}=0.3 M_{S M B H}, R_{C N D}=1.5 p c\right)$
- 2 light bodies on circular orbits:
- $a_{1}=0.04 R_{C N D}, a_{2}=0.05 R_{C N D}$
- $e_{1}=e_{2}=0, i_{1}=i_{2}=70^{\circ}$

	Strong Interaction	Weak Interaction
m_{1}	$9 \cdot 10^{-6} M_{S M B H}$	$5 \cdot 10^{-6} M_{S M B H}$
m_{2}	$9 \cdot 10^{-6} M_{S M B H}$	$5 \cdot 10^{-6} M_{S M B H}$

- Spherical external potential from stellar cusp to damp KL oscillations.

VHS Mechanism

Haas, Šubr \& Vokrouhlický (2011)

VHS Mechanism

External Potential

In Hass et. al. (2011) the averaged external potential to dampen the KL oscillations was given by

$$
\overline{\mathscr{R}}_{c}=-\frac{G m M_{c}}{\beta R_{C W D}}\left(\frac{a}{R_{C W D}}\right)^{\beta} \mathscr{J}(e, \beta)
$$

where

$$
\mathscr{F}(e, \beta)=\frac{1}{\pi} \int_{0}^{\pi}(1-e \cos u)^{1+\beta} \mathrm{d} u=1+\sum_{n \geq 1} a_{n} e^{2 n}
$$

And coefficients are given by

$$
\frac{a_{n+1}}{a_{n}}=\left[1-\frac{3+\beta}{2(n+1)}\right]\left[1-\frac{2+\beta}{2(n+1)}\right]
$$

And $a_{1}=\beta(1+\beta) / 4$ where $\beta=1 / 4$

VHS Mechanism with relativistic corrections

External Potential

Rubincam (1977) provides with an external potential

$$
V_{G R}=-\frac{G M \cdot h^{2}}{c^{2} r^{3}}
$$

Which can be used to get $1^{\text {st }}$ order corrections. Averaging it like before we get

$$
\overline{\mathscr{R}}_{G R}=-\frac{G M \cdot m h^{2}}{c^{2} a^{3}} \mathscr{F}(e, \beta)
$$

where $\mathscr{F}(e, \beta)$ is the same but with $\beta=-3$

VHS Mechanism with relativistic corrections

External Potential

- GR correction potential is much stronger in close region around the SMBH.
- Quickly decays so only damps KL oscillations within a small region.

VHS Mechanism with relativistic corrections

Code

- We use ARWV, a N-body integration code which calculates PN corrections upto 2.5 orders (Chassonnery et al. 2019).
- It uses the ARCHAIN algorithm developed by Mikkola and Merritt (2006, 2008) to calculate velocity dependent forces.

Setup

- Four body system
- Central massive body ($\left.M_{S M B H}=4 \cdot 10^{6} M_{\odot}\right)$
- 1 massive perturber on circular orbit. $\left(M_{C W D}=10^{4} M_{\odot}, R_{C W D}=0.1 p c\right)$
- 2 light bodies on initially circular orbits:
- $e_{1}=e_{2}=0, i_{1}=i_{2}=70^{\circ}$

	Strong Interaction	Weak Interaction
m_{1}	$10 M_{\odot}$	$1 M_{\odot}$
m_{2}	$10 M_{\odot}$	$1 M_{\odot}$
a_{1}	$3.5 \cdot 10^{-2} R_{C W D}$	$3.5 \cdot 10^{-2} R_{C W D}$
a_{2}	$4.5 \cdot 10^{-2} R_{C W D}$	$7.0 \cdot 10^{-2} R_{C W D}$

VHS Mechanism with relativistic corrections

Strong Interaction

Weak
Interaction

VHS Mechanism with relativistic corrections

Strong Interaction - Non-zero eccentricity

VHS Mechanism with relativistic corrections

Weak Interaction - Non-zero eccentricity

VHS Mechanism with relativistic corrections

Strong Interaction - KL Oscillations

VHS Mechanism with relativistic corrections

Weak Interaction - KL Oscillations

Evolution of a disk of stars

Setup

- Central massive body ($\left.M_{S M B H}=4 \cdot 10^{6} M_{\odot}\right)$
- 1 massive perturber on circular orbit. $\left(M_{C W D}=10^{4} M_{\odot}, R_{C W D}=0.1 p c\right)$
- Disk of 50 stars:
- Equal mass of $10 M_{\odot}$
- $e \in(0,1)$
- $a \in\left[3.5 \cdot 10^{-4}, 2.0 \cdot 10^{-2}\right] \mathrm{pc}$
- $i \in\left[65^{\circ}, 75^{\circ}\right]$

Evolution of a disk of stars

Evolution

Summary

- The four body dynamics of VHS mechanism are applicable in relativistic regime.
- These dynamics are not only applicable in secular system with damped KL oscillations but
- can exist in non-eccentric orbits with slight changes.
- can co-exist with KL oscillations and bind the oscillation together in case of strong interaction.
- These relativistic corrections are applicable to stars in close orbit around Sagittarius A^{*} and these dynamics could be present in that system.

