Evolution of Stellar structures in the Galactic Centre

Myank Singhal

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node
 (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (\mathcal{V})

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node
 (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (\mathcal{V})

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node
 (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (\mathcal{V})

Descending Node

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (\mathcal{V})

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node
 (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (ν)

- Shape of orbit:
 - Semi-major axis (a)
 - Eccentricity (e)
- Orientation of plane:
 - Inclination (i)
 - Longitude of ascending node
 (Ω)
- Orientation of particle
 - Augment of pericenter (ω)
 - True anomaly (ν)

Kozai-Lidov Oscillations

- A binary system perturbed by a massive body.
- Angular momentum of binary is no longer conserved.
- $M_{SMBH} = 4 \cdot 10^6 M_{\odot}$ $M_{CWD} = 10^4 M_{\odot}$ $R_{CWD} = 0.1 pc$ $M_{test} = 10 M_{\odot}$ $R_{test} = 2.2 \cdot 10^{-2} pc$

Kozai-Lidov Oscillations

- Oscillations damped due to spherically symmetric external potential.
- External potential can be
 - extended stellar cusp.
 - relativistic corrections to newtonian dynamics.
- $M_{SMBH} = 4 \cdot 10^6 M_{\odot}$ $M_{test} = 10 M_{\odot}$ $R_{test} = 1.5 \cdot 10^{-2} pc$ $M_{CWD} = 10^4 M_{\odot}$ $R_{CWD} = 0.1 pc$

VHS Mechanism

Haas, Šubr & Vokrouhlický (2011)

- Four body system
 - Central massive body ($M_{SMBH} = 3.5 \cdot 10^6 M_{\odot}$)
 - 1 massive perturber on circular orbit. ($M_{CND} = 0.3M_{SMBH}, R_{CND} = 1.5pc$)
 - 2 light bodies on circular orbits:
 - $a_1 = 0.04 R_{CND}, a_2 = 0.05 R_{CND}$

•
$$e_1 = e_2 = 0$$
, $i_1 = i_2 = 70^\circ$

	Strong Interaction	Weak Interaction
m_1	$9 \cdot 10^{-6} M_{SMBH}$	$5 \cdot 10^{-6} M_{SMBH}$
m_2	$9 \cdot 10^{-6} M_{SMBH}$	$5 \cdot 10^{-6} M_{SMBH}$

• Spherical external potential from stellar cusp to damp KL oscillations.

VHS Mechanism

Haas, Šubr & Vokrouhlický (2011)

VHS Mechanism

External Potential

In Hass et. al. (2011) the averaged external potential to dampen the KL oscillations was given by

$$\overline{\mathcal{R}}_{c} = -\frac{GmM_{c}}{\beta R_{CWD}} \left(\frac{a}{R_{CWD}}\right)^{\beta} \mathcal{J}(e,\beta)$$

where

$$\mathcal{J}(e,\beta) = \frac{1}{\pi} \int_0^{\pi} (1 - e\cos u)^{1+\beta} du = 1 + \sum_{n \ge 1} a_n e^{2n}$$

And coefficients are given by

$$\frac{a_{n+1}}{a_n} = \left[1 - \frac{3+\beta}{2(n+1)}\right] \left[1 - \frac{2+\beta}{2(n+1)}\right]$$

And $a_1 = \beta(1+\beta)/4$ where $\beta = 1/4$

External Potential

Rubincam (1977) provides with an external potential

$$V_{GR} = -\frac{GM_{\bullet}h^2}{c^2r^3}$$

Which can be used to get 1st order corrections. Averaging it like before we get

$$\overline{\mathcal{R}}_{GR} = -\frac{GM_{\bullet}mh^2}{c^2a^3}\mathcal{J}(e,\beta)$$

where $\mathcal{J}(e,\beta)$ is the same but with $\beta = -3$

External Potential

- GR correction potential is much stronger in close region around the SMBH.
- Quickly decays so only damps KL oscillations within a small region.

Code

- We use *ARWV*, a N-body integration code which calculates PN corrections upto 2.5 orders (Chassonnery et al. 2019).
- It uses the ARCHAIN algorithm developed by Mikkola and Merritt (2006, 2008) to calculate velocity dependent forces.

Setup

- Four body system
 - Central massive body ($M_{SMBH} = 4 \cdot 10^6 M_{\odot}$)
 - 1 massive perturber on circular orbit. ($M_{CWD} = 10^4 M_{\odot}, R_{CWD} = 0.1 pc$)
 - 2 light bodies on initially circular orbits:

•
$$e_1 = e_2 = 0$$
, $i_1 = i_2 = 70^\circ$

	Strong Interaction	Weak Interaction
m_1	$10 M_{\odot}$	$1M_{\odot}$
m_2	$10 M_{\odot}$	$1 M_{\odot}$
a_1	$3.5 \cdot 10^{-2} R_{CWD}$	$3.5 \cdot 10^{-2} R_{CWD}$
a_2	$4.5 \cdot 10^{-2} R_{CWD}$	$7.0 \cdot 10^{-2} R_{CWD}$

70.20

Interaction

Strong Interaction - Non-zero eccentricity

Weak Interaction - Non-zero eccentricity

Strong Interaction - KL Oscillations

Weak Interaction - KL Oscillations

Evolution of a disk of stars Setup

- Central massive body ($M_{SMBH} = 4 \cdot 10^6 M_{\odot}$)
- 1 massive perturber on circular orbit. ($M_{CWD} = 10^4 M_{\odot}, R_{CWD} = 0.1 pc$)
- Disk of 50 stars:
 - Equal mass of $10 M_{\odot}$
 - *e* ∈ (0,1)
 - $a \in [3.5 \cdot 10^{-4}, 2.0 \cdot 10^{-2}] \text{ pc}$
 - *i* ∈ [65°, 75°]

Evolution of a disk of stars Evolution

Summary

- The four body dynamics of VHS mechanism are applicable in relativistic regime.
- These dynamics are not only applicable in secular system with damped KL oscillations but
 - can exist in non-eccentric orbits with slight changes.
 - can co-exist with KL oscillations and bind the oscillation together in case of strong interaction.
- These relativistic corrections are applicable to stars in close orbit around Sagittarius A* and these dynamics could be present in that system.