V BRATISLAVE

Precession of the orbital planes and rotational axes in transiting exoplanets

Conference of Young Astronomers in Bezovec 16.06.2023

NAME: DMYTRO ORIKHOVSKYI
SUPERVISOR: RNDR. THEODOR PRIBULLA, CSC.

Outline

$>$ Goals
$>$ Objects of research
>Methodology

- Results and conclusions

Goals

$>$ To search for exoplanets with spin axis-orbital plane misalignment.
>To quantify asymmetry values for exoplanetary light curves and to detect those which show transit duration variations (TDV) due to the orbital plane precession.

Rapidly rotating parent stars

o Early-type stars from O to mid-F
o ~30 hosts with $T_{\text {eff }}>7000 \mathrm{~K}$ showing transits
o Systems with hot parent stars show isotropic orientations of rotational axes with respect to the exoplanet orbits, late-type stars are typically aligned
o Fast rotation produces gravitation darkening

Data processing

Example light curve

Asymmetry evaluation

1. Divide the phase light curve into even number of bins
2. Asymmetry parameter:
$\alpha=\frac{1}{N} \sum \frac{b_{i}-b_{\text {iref }}}{\sigma_{i}^{2}+\sigma_{\text {iref }}^{2}}$, where b_{i} - median value of the bin, $\sigma_{\mathrm{i}}-$ standard deviation of values in the bin, N - number of bins
3. $0<\alpha \leq 1$ - symmetric curve, $\alpha>3$ asymmetric curve
4. Transit duration variation:

$$
\delta=\frac{1}{\mathrm{~N}} \sum \frac{\mathrm{~b}_{\text {iprevious }}-\mathrm{b}_{\text {inext }}}{\sigma_{\text {iprevious }}^{2}+\sigma_{\text {inext }}^{2}}
$$

Results

Object	Asymmetry value α (20 bins)	Asymmetry value α (40 bins)
TIC 016740101 aka KELT-9b	41.952	21.397
TIC 065412605 aka TOI-626 (planet candidate)	3.047	1.570
TIC 129979528 aka WASP-33b	8.879	5.717
TIC 354619337 aka MASCARA-1b	7.062	3.045
TIC 371443216 aka MASCARA-4b	6.296	3.322
TIC 399870368 aka HAT-P-70b	1.459	0.949

KELT-9b lightcurve

TIC 016740101 transit duration variation

Transit duration variation between three separate periods of observations by TESS: between sectors $14-15$ and $41(\delta=1.805)$, sectors 41 and $55(\delta=1.047)$, and sectors $14-15$ and $55(\delta=2.012)$.

WASP-33b lightcurve

MASCARA-1b lightcurve

MASCARA-4b lightcurve

HAT-P-70b lightcurve

Unbinned data

Asymmetry values - 0.949 for 40 bins, 1.934 for 20 bins

TOI 626 lightcurve

TIC 117789567 transit duration variation

TDV value for the TIC $117789567 \delta=14.117$.

Conclusions and future work

PFound 6 asymmetric transits and one object showing TDV from 64 hot Jupiters
$>$ Some transits require improvement and further detrending for better results
> Conducting additional observation of the most interesting objects (PHD thesis)

Questions from the opponent

What is the connection between values K and K_{1} in equations 1.1.3 and 1.1.4?
Answer:
The K value is radial-velocity semi-amplitude and comes from eq. 1.1.2 :
$V=V_{0}+K[\cos (\omega+v)+e \cos \omega]$ (1.1.2),
and it is given by
$K=\frac{2 \pi}{P} \frac{a \sin i}{\sqrt{1-e^{2}}}(1.1 .3)$.
Using the $3^{\text {rd }}$ Kepler's law as
$G\left(M_{1}+M_{2}\right)=\frac{4 \pi^{2} a^{3}}{P^{2}}$, where $\mathrm{a}=\mathrm{a}_{1}+\mathrm{a}_{2}$ and relation $m_{1} a_{1}=m_{2} a_{2}$, we will get
$G\left(M_{1}+M_{2}\right)=\frac{4 \pi^{2} a_{1}^{3}}{P^{2}} \frac{\left(m_{1}+m_{2}\right)^{3}}{m_{2}^{3}}$
After substituting a_{1} and reductions, we get eq. 1.1.4
$\frac{\left(m_{2} \sin i\right)^{3}}{\left(m_{1}+m_{2}\right)^{2}}=\frac{P}{2 \pi G} K_{1}^{3}\left(1-e^{2}\right)^{3 / 2}(1.1 .4)$
Where K_{1} is the radial-velocity semi-amplitude of more massive component, the star.

Literature

1. Nodal Precession and Tidal Evolution of Two Hot-Jupiters: WASP-33 b and KELT-9 b, Stephan et al., 2020
2. KELT-9 b's Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin-Orbit Misalignment, Ahlers et al., 2020
3. The clockwork is moving on a combined analysis of TESS and Kepler measurements of Kepler-13Ab, M. Szabo, T. Pribulla et al., 2020
4. Mining the Ultra-Hot Skies of HAT-P-70b: Detection of a Profusion of Neutral and Ionized Species, Bello-Arufe et al., 2021
5. Rapidly rotating stars and their transiting planets: KELT-17b, KELT-19Ab, and KELT-21b in the CHEOPS and TESS era, Garai et al., 2022
6. The effects of stellar gravity darkening on high-resolution transmission spectra, Cauley et Ahlers, 2020
7. Gravity-Darkening Analysis of Misaligned Hot Jupiter MASCARA-4 b, Ahlers et al., 2019
