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Cosmogonic models

• describe the origin and evolution of
planetary systems;

• should be consistent with the modern
structure of the Solar System;

• different approaches, a lot of free
parameters;

• “classical” (non-migrational) models: objects
form on their current orbits;

• “dynamical” (migration-based) models:
redistribution of matter due to planetary
migrations.
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Fig. 1. Artist's illustration of the 
protoplanetary disk 

(source: 
https://en.wikipedia.org/wiki/Formation_and_

evolution_of_the_Solar_System)



Grand Tack model 
(Walsh et al., 2011) 

• covered in our bachelor thesis (2022);

• describes events before the dissipation of the
protoplanetary disk;

• key role of gas-driven planetary migrations and
mean-motion orbital resonances;

• migration of Jupiter (stopped and reversed by
Saturn) provided a major redistribution of matter
in the Solar System;

• explained the depletion of the initially massive
asteroid belt.
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Fig. 2. Scenario of the model
(source: Walsh et. al., 2011)
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Our simulation

Fig. 3. Original distribution of bodies from the 
model (source: http://perso.astrophy.u-

bordeaux.fr/~sraymond/movies_grandtack.html)
Fig. 4. Distribution of excentricities and 
inclinations at the end of the simulation



Pebble-accretion model 
(Lambrechts and Johansen, 2012)

• competing theory, does not involve
migrations;

• key mechanisms: growth of planetary
embryos due to the accretion of small
pebbles (governed by gravity and gas
drag);

• rapid formation of giant planets explained;

• low-mass asteroid belt from the start – no
need for mass scattering.

5

Fig. 5. Pebble vs planetesimal accretion (source: 
https://planetplanet.net/2022/06/26/from-

planetesimals-to-planetary-embryos/ )



Distinguishing among models
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Fig. 6. Successful models (source: https://planetplanet.net/2022/06/29/formation-of-the-rocky-
planets-choose-your-own-adventure/)



Manx comets

Fig. 7. Unusual object 1996 PW
(source: https://hvezdaren-mi.sk/

/osem-miliard-asteroidov-v-oortovom-oblaku-komet/) 
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Fig. 8. Spectral reflectivity of 
C/2014 S3 (PANSTARRS)

(source: Meech et al., 2016)



Meteoroid strength parameters

Fig. 9. KB parameter
(source: Flynn, 2018)

Fig. 10. PE-criterion
(source: Flynn, 2018)
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Rocky meteoroids on cometary orbits

Fig. 11. Properties of the Karlštejn fireball
(source: Spurný and Borovička, 1999)

Fig. 12. Beginning and end heights of 
no-sodium and cometary meteors
(source: Borovička et al., 2002) 9



Alberta fireball 
(Vida et. al., 2022)

10

• detected near Edmonton, Alberta, Canada on
February 22, 2021 at 13:23:17 UTC;

• PE = -4.49 → Type I (refractory material);

• retrograde long-period cometary orbit;

• end height 46.5 km with mass ~2 kg and
speed 62 km/s;

• Vida et. al.: ~1–20% of the Oort cloud objects
are rocky – proof for migration-based models.

Fig. 13. Alberta fireball detected by two 
Global Fireball Observatory stations

(source: Vida et. al., 2022)

Fig. 14. Set of Type I objects on cometary orbits used by Vida et. al.



Aims of our work

• broaden the knowledge of cosmogonic models;

• investigate physical characteristics of meteoroids,
concentrating on those limiting cosmogonic theories;

• prepare the database from AMOS cameras for
analysis (current stage: new software testing);

• search in the database for refractory meteoroids on
cometary orbits;

• investigate interesting cases trying to find patterns
and limitations for cosmogonic models.
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Fig. 15. The  All-sky Meteor Orbit  
System (AMOS) camera
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Thank you for attention!
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