

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

A new method of distinguishing among cosmogonic models of the Solar System

Bezovec 2023: Conference of Young Astronomers

Author: Bc. Vitalii Kuksenko

Department of Astronomy, Physics of the Earth and Meteorology Faculty of Mathematics, Physics and Informatics of Comenius University in Bratislava

Supervisor of Master's Thesis: doc. RNDr. Juraj Tóth, PhD Supervisor of Bachelor's Thesis: doc. RNDr. Leonard Kornoš, PhD

Presentation date: 16.6.2023

Cosmogonic models

- describe the origin and evolution of planetary systems;
- should be consistent with the modern structure of the Solar System;
- different approaches, a lot of free parameters;
- "classical" (non-migrational) models: objects form on their current orbits;
- "dynamical" (migration-based) models: redistribution of matter due to planetary migrations.

https://en.wikipedia.org/wiki/Formation_and_ evolution_of_the_Solar_System)

Grand Tack model (Walsh et al., 2011)

Fig. 2. Scenario of the model (source: Walsh et. al., 2011)

covered in our bachelor thesis (2022); •

- describes events before the dissipation of the protoplanetary disk;
- key role of gas-driven planetary migrations and mean-motion orbital resonances;
- migration of Jupiter (stopped and reversed by • Saturn) provided a major redistribution of matter in the Solar System;
- explained the depletion of the initially massive asteroid belt.

BEZOVE 2023

Our simulation

Fig. 3. Original distribution of bodies from the model (source: <u>http://perso.astrophy.u-</u> bordeaux.fr/~sraymond/movies_grandtack.html)

Fig. 4. Distribution of excentricities and inclinations at the end of the simulation ⁴

Pebble-accretion model

(Lambrechts and Johansen, 2012)

Fig. 5. Pebble vs planetesimal accretion (source: <u>https://planetplanet.net/2022/06/26/from-</u> planetesimals-to-planetary-embryos/)

- competing theory, does not involve migrations;
- key mechanisms: growth of planetary embryos due to the accretion of small pebbles (governed by gravity and gas drag);
- rapid formation of giant planets explained;
- low-mass asteroid belt from the start no need for mass scattering.

BEZOVEC 2023

Distinguishing among models

Fig. 6. Successful models (source: https://planetplanet.net/2022/06/29/formation-of-the-rockyplanets-choose-your-own-adventure/)

Manx comets

Meteoroid strength parameters

$K_B = \log[$	$[\rho_{\rm B}] + 2.5\log[V_{\infty}] - 0$	0.5log[cosZ] (8)	$PE = \log(\rho_E) - 0.42\log(m_{\infty}) + 1.49\log(V_{\infty}) - 1.29\log(\cos Z_R) $ (7)				
where (in g/cm ³ local zen stronger/ conductiv Meteoroid	ρ_B is the air def), V_{∞} is the initial with angle of the rac denser/less porous/h wity of the meteoroid Strength Groups and Proba	nsity at the start of the meteor speed (in cm/s ¹) and Z is the diant. Larger values of K _B indicate higher specific heat/higher thermal able Material Associations.	where ρ_E is the atmospheric mass density (in g/cm ³) at the height of the fireball end point; m_{∞} is the entry mass in grams, computed from the total light production; V_{∞} is the entry speed in km/s, and Z_R is the entry angle from the zenith. Larger (i.e., less negative PE values correspond to stronger material displaying less ablation Meteor Strength Classification (from Ceplecha et al., 1998).				
Group	Strength Parameter	Probable Association	Type.	PE Range.	Meteorite Association.		
A: B: C: D:	$\begin{array}{l} 7.3 < \! K_B \leq \! 8 \\ 7.1 < \! K_B \leq \! 7.3 \\ 6.6 < \! K_B \leq \! 7.1 \\ 6.6 > \! K_B \end{array}$	Carbonaceous Chondrites/asteroidal/JFC Dense cometary material JFC/HTC Regular cometary material Weak cometary material (JFC)	type I: type II: type IIIa: type IIIb:	$\begin{array}{l} PE > -4.60 \\ -5.25 < PE \leq -4.6 \\ -5.7 < PE \leq -5.25 \\ PE \leq -5.7 \end{array}$	Ordinary Chondrite-like Carbonaceous Chondrite (CI or CM) Short period cometary Weak cometary material		

Fig. 9. K_B parameter (source: Flynn, 2018)

Fig. 10. PE-criterion (source: Flynn, 2018)

Rocky meteoroids on cometary orbits

	EN010697			
	"Karlštejn"			
Date	1997 June 1			
Time (UT)	$23^{h}56^{m}20^{s}\pm 3^{s}$			
Beginning velocity (km s^{-1})	64.81 ± 0.09			
Beginning height (km)	92.96 ± 0.01			
Beginning geographic longitude (E)	14°.1965±0°.0001			
Beginning geographic latitude (N)	49°9176±0°0001			
Beginning angle to the vertical	65°629±0°012			
Terminal velocity (km s^{-1})	61.1 ± 0.9			
Terminal height (km)	65.79 ± 0.02			
Terminal geographic longitude (E)	$13^{\circ}.3630 \pm 0^{\circ}.0001$			
Terminal geographic latitude (N)	49°9550±0°0001			
Terminal angle to the vertical	66°.165±0°.012			
Length (km)	66.53			
Duration (s)	1.03			
Max. absolute magnitude	-7.4			
Initial mass (kg)	0.2			
Max. dyn. pressure (MPa)	0.66			
PE coefficient	-4.52			
Туре	I			

Fig. 11. Properties of the Karlštejn fireball (source: Spurný and Borovička, 1999)

Fig. 12. Beginning and end heights of no-sodium and cometary meteors (source: Borovička et al., 2002)

BEZOVEC 2023

Alberta fireball (Vida et. al., 2022)

Fig. 13. Alberta fireball detected by two Global Fireball Observatory stations (source: Vida et. al., 2022)

- detected near Edmonton, Alberta, Canada on February 22, 2021 at 13:23:17 UTC;
- $PE = -4.49 \rightarrow \text{Type I}$ (refractory material);
- retrograde long-period cometary orbit;
- end height 46.5 km with mass ~2 kg and speed 62 km/s;
- Vida et. al.: ~1–20% of the Oort cloud objects
 - are rocky proof for migration-based models.

Name	PE	T_J	Mass (kg)	a (au)	${f q}$ (au)	e	${ m i} m (deg)$	$\omega \ ({ m deg})$	$\Omega \ ({ m deg})$
Alberta (this work)	$-4.49^{+0.12}_{-0.13}$	$-0.46\substack{+0.06\\-0.02}$	$1.8^{+1.8}_{-0.9}$	104^{+126}_{-54}	$0.615_{-0.002}^{+0.002}$	$0.994^{+0.003}_{-0.006}$	$121.40^{+0.4}_{-0.4}$	$104.0^{+0.3}_{-0.4}$	333.86
Karlštejn[69]	$-4.53_{-0.23}^{+0.42}$	$0.64_{-0.18}^{+0.12}$	$0.20_{-0.18}^{+0.50}$	$3.5^{+0.18}_{-0.18}$	$1.012\substack{+0.0002\\-0.0002}$	$0.710\substack{+0.016\\-0.016}$	$137.90_{-0.10}^{+0.10}$	$174.60_{-0.14}^{+0.14}$	71.55
MORP #441[74]	-4.04	-0.78	0.020	24.7	0.765	0.969	159.7	56.7	103.8

Fig. 14. Set of Type I objects on cometary orbits used by Vida et. al.

BEZOVE 2023

Aims of our work

Fig. 15. The All-sky Meteor Orbit System (AMOS) camera

- broaden the knowledge of cosmogonic models;
- investigate physical characteristics of meteoroids, concentrating on those limiting cosmogonic theories;
- prepare the database from AMOS cameras for analysis (*current stage: new software testing*);
- search in the database for refractory meteoroids on cometary orbits;
- investigate interesting cases trying to find patterns and limitations for cosmogonic models.

Thank you for attention!

IS0:0405

02/22/2021 07:23:20 DOD LS460W

N53° 28' 40. 31" W113° 29' 31. 61"

States 14.5

THE PARTY CALL

References:

- https://en.wikipedia.org/wiki/Formation_and_evolution_of_the_Solar_System;
- Vida et al., 2022. Direct measurement of decimetre-sized rocky material in the Oort cloud;
- Walsh et al., 2011. A low mass for Mars from Jupiter's early gas-driven migration;
- bachelor thesis Grand Tack model and Main Belt Asteroid distribution (2022) and references used in it;
- http://perso.astrophy.u-bordeaux.fr/~sraymond/movies_grandtack.html;
- Chambers, 1999. Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies;
- Lambrechts and Johansen, 2012. Rapid growth of gas-giant cores by pebble accretion;
- Levison et al., 2015. Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects;
- https://planetplanet.net;
- Weissman and Levison, 1997. Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud?;
- https://hvezdaren-mi.sk/osem-miliard-asteroidov-v-oortovom-oblaku-komet/;
- Meech et al., 2016. Inner solar system material discovered in the Oort cloud;
- Shannon et al., 2019. Oort cloud asteroids: collisional evolution, the Nice Model, and the Grand Tack;
- Ceplecha and McCrosky, 1976. Fireball end heights: A diagnostic for the structure of meteoric material;
- Ceplecha et al., 1998. Meteor Phenomena and Bodies;
- Flynn, 2018. Physical properties of the stone meteorites: Implications for the properties of their parent bodies;
- Matlovič et al., 2017. Spectra and physical properties of Taurid meteoroids;
- Spurný and Borovička, 1999. Detection of a high density meteoroid on cometary orbit;
- Borovička et al., 2002. Evidences for the existence of non-chondritic compact material on cometary orbits;
- https://fireball.amsmeteors.org/members/imo_view/event/2021/9788 etc.

