Spectroscopy of selected T Tauri stars

<u>Ľubomír Hambálek</u> with: T. Pribulla, M. Vaňko, and E. Kundra

June 17, 2023

T Tauri stars

Young (Li I 6707Å absorption), lower mass (0.5-2.5 M_{\odot}), usually binaries

T Tauri stars

"Classical"

- EW H_α > 10 Å
- NIR excess accretion disk
- jets and outflows
- magnetic disk interaction

"Weak-lined"

- EW $H_{\alpha} < 10 \text{ Å}$
- almost no NIR excess dissipated disk
- no jets or outflows
- solar-type magnetic activity

Lee Hartmann, 2000

T Tauri stars

Taurus-Auriga star forming region

Nearest SFR (~140 pc), Ø ~30 pc $M_{total} \sim 3.5 \times 10^4 M_{\odot}$ **Our sample:** V < 11 mag WTTS with unknown/contradicting parameters in literature.

#	star name	this	N12	K17	N95	W07	W96
01	HD 285281	K0 V	K0	F9	K0	K1	K1
02	BD+19 656	K1 V	K1	K1.5	$\mathbf{G0}$		K1
03	HD 284135	G2 V	G0	G3	$\mathbf{G0}$	G3 V	G3
04	HD 284149	F9 V	F8	G1	G0		G1
05	HD 281691	K0 V	G8	K2.5	G_{5}	G8 III	K1
06	HD 284266	G9 V	K0	K0	F8	K0 V	K0
08	HD 284503	G2 V	G8	G8	G0		G8
09	HD 284496	G8 V	$\mathbf{G0}$	K0	G0		K0
12	HD 283798	G2 IV	G2	G7	G_{5}		$\mathbf{G7}$
13	HD 283782	G2 IV		K1	K0		K1
14	HD 030171	G3 IV	G_{5}	G3			G_{5}
15	HD 031281	G2 V	$\mathbf{G0}$	G1		G1 V	G1
16	HD 286179	G2 V	G0	G3	G0	G3 V	G3
17	HD 286178	K0 V	K1	K1	G_{5}		K1
18	HD 283447	K2 V	K3		K2		
19	HD 283572	G2 IV	G2	G4	G0		
20	HD 285778	G7 V	K1	G6	G0		
21	HD 283518	K3 V	K7	K3	K5		

Mamajek, 2009

Spectra

Continuation of previous photometric research of these objects (see Hambálek, et al. 2019)

6/19

Tautenburg (TLS, Germany), Skalanté Pleso (SP, Slovakia), Stará Lesná (SL, Slovakia), and Asiago (ASI, Italy)

Site	Telescope	R	# objects	# spectra	Season	
TLS-DE	2.0 m	31 500	20	70	2017	-
SP-SK	1.3 m	38 000	4	4	2016-2018	
SL-SK	0.6 m	11 000	21	80	2015-2017	
			15	40	2022	
ASI-IT	1.2 m	1 200	18	18	2018	+Ca II H&K
				Σ 212		_

Radial velocities and EW

RV templates: K2V (HD 03765), K0V (HD 23169), and G2V (HD 65583) with $v_{rot} < 10 \text{ km.s}^{-1}$

Table 3. Measured mean values of radial velocities, rotational line broadening, heliocentric velocities, and EWs of selected lines (in columns 8 - 12). In the case of sodium lines, only the interstellar absorption profile was measured. For HD 283447, the total EW of twin ISM peaks was used (see Figure 4).

TTS	Object name	RV [km s ⁻¹]	$v \sin i$ [km s ⁻¹]	U [km s ⁻¹]	V [km s ⁻¹]	W [km s ⁻¹]	Η <i>α</i> [mÅ]	Li 6104 [mÅ]	Li 6708 [mÅ]	Na 5890 [mÅ]	Na 5896 [mÅ]
01	HD 285281	+14.01	80.0	-12.04	-5.92	-9.27		370(21)	423(8)	70(5)	73(5)
02	V1298 Tau	+10.99	38.8	-9.49	-6.63	-7.81	254(19)	383(20)	376(16)	-	4
03	HD 284135	+14.81	72.6	-13.5	-7.3	-9.51	824(21)	243(15)	193(15)	71(4)	74(4)
04	HD 284149	+15.82	28.4	-14.23	-6.61	-9.09	720(16)	222(13)	169(11)	33(5)	13(5)
05	HD 281691	+11.22	22.4	-13.66	-17.65	-8.21	145(15)	369(17)	344(13)		1.4
06	HD 284266	+14.83	33.0	-12.10	-5.88	-9.00	408(20)	295(18)	239(15)	147(7)	30(7)
07	HIP 20782	+16.96	50.3	-13.36	-8.31	-13.31		238(18)	172(18)	9(5)	4(5)
08	HD 284503	+14.82	42.8	-16.03	-21.04	-3.67	125(16)	306(15)	274 (14)	32(5)	20(4)
09	HD 284496	+15.25	25.0	-13.33	-6.02	-9.86	297(18)	345(18)	288(14)	70(11)	31(11)
10	HD 285840	+20.96	25.7	-18.61	-3.15	-10.54		345(18)	214(14)		-
11	HD 285957	+17.21	25.8	-15.10	-16.11	-7.27	155(15)	377(18)	411(14)	30(6)	52(6)
12	HD 283798	+12.96	26.5	-11.81	-6.88	-10.50	380(30)	305(13)	243(11)	1.1	-
13	HD 283782	+17.90	79.5	-17.48	-20.53	-15.33	-3937(15)	245(19)	237(20)	126(6)	117(6)
14	HD 30171	+18.71	112.9	-16.77	-16.69	-6.30	706(27)	269(23)	273(9)	76(6)	68(6)
15	HD 31281	+15.03	84.9	-12.47	-7.16	-10.33	970(18)	233(15)	167(5)	71(4)	68(4)
16	HD 286179	+12.51	16.5	-10.32	-4.25	-7.73	1316(17)	247(16)	167(11)	-	
17	HD 286178	+18.85	46.6	-16.54	-16.79	-5.67	211(17)	384(16)	416(15)	51(6)	45(5)
18	HD 283447	+3.55	42.7	-3.73	-13.15	-9.31	-1397(22)	386(20)	500(18)	108(11)*	144(11)*
19	HD 283572	+15.51	81.9	-15.57	-12.18	-11.17	899(15)	256(13)	274(14)	82(3)	67(3)
20	HD 285778	+15.19	17.5	-12.83	-6.29	-9.40	510(18)	295(16)	269(11)	-	
21	HD 283518	+18.46	70.9	-18.41	-11.07	-11.81	-154(25)	394(26)	517(26)	17(9)	9(9)

* = found a quadruple star, multiple absorptions in sodium profile, see text.

Radial velocities and EW

RV templates: K2V (HD 03765), K0V (HD 23169), and G2V (HD 65583) with $v_{rot} < 10 \text{ km.s}^{-1}$

Table 3. Measured mean values of radial velocities, rotational line broadening, heliocentric velocities, and EWs of selected lines (in columns 8 - 12). In the case of sodium lines, only the interstellar absorption profile was measured. For HD 283447, the total EW of twin ISM peaks was used (see Figure 4).

TTS	Object name	RV [km s ⁻¹]	$v \sin i$ [km s ⁻¹]	U [km s ⁻¹]	V [km s ⁻¹]	W [km s ⁻¹]	Η <i>α</i> [mÅ]	Li 6104 [mÅ]	Li 6708 [mÅ]	Na 5890 [mÅ]	Na 5896 [mÅ]
01	HD 285281	+14.01	80.0	-12.04	-5.92	-9.27	- 14 C	370(21)	423(8)	70(5)	73(5)
02	V1298 Tau	+10.99	38.8	-9.49	-6.63	-7.81	254(19)	383(20)	376(16)	-	4
03	HD 284135	+14.81	72.6	-13.5	-7.3	-9.51	824(21)	243(15)	193(15)	71(4)	74(4)
04	HD 284149	+15.82	28.4	-14.23	-6.61	-9.09	720(16)	222(13)	169(11)	33(5)	13(5)
05	HD 281691	+11.22	22.4	-13.66	-17.65	-8.21	145(15)	369(17)	344(13)		- 14. C
06	HD 284266	+14.83	33.0	-12.10	-5.88	-9.00	408(20)	295(18)	239(15)	147(7)	30(7)
07	HIP 20782	+16.96	50.3	-13.36	-8.31	-13.31		238(18)	172(18)	9(5)	4(5)
08	HD 284503	+14.82	42.8	-16.03	-21.04	-3.67	125(16)	306(15)	274 (14)	32(5)	20(4)
09	HD 284496	+15.25	25.0	-13.33	-6.02	-9.86	297(18)	345(18)	288(14)	70(11)	31(11)
10	HD 285840	+20.96	25.7	-18.61	-3.15	-10.54		345(18)	214(14)		-
11	HD 285957	+17.21	25.8	-15.10	-16.11	-7.27	155(15)	377(18)	411(14)	30(6)	52(6)
12	HD 283798	+12.96	26.5	-11.81	-6.88	-10.50	380(30)	305(13)	243(11)	-	-
13	HD 283782	+17.90	79.5	-17.48	-20.53	-15.33	-3937(15)	245(19)	237(20)	126(6)	117(6)
14	HD 30171	+18.71	112.9	-16.77	-16.69	-6.30	706(27)	269(23)	273(9)	76(6)	68(6)
15	HD 31281	+15.03	84.9	-12.47	-7.16	-10.33	970(18)	233(15)	167(5)	71(4)	68(4)
16	HD 286179	+12.51	16.5	-10.32	-4.25	-7.73	1316(17)	247(16)	167(11)	-	-
17	HD 286178	+18.85	46.6	-16.54	-16.79	-5.67	211(17)	384(16)	416(15)	51(6)	45(5)
18	HD 283447	+3.55	42.7	-3.73	-13.15	-9.31	-1397(22)	386(20)	500(18)	108(11)*	144(11)*
19	HD 283572	+15.51	81.9	-15.57	-12.18	-11.17	899(15)	256(13)	274(14)	82(3)	67(3)
20	HD 285778	+15.19	17.5	-12.83	-6.29	-9.40	510(18)	295(16)	269(11)		-
21	HD 283518	+18.46	70.9	-18.41	-11.07	-11.81	-154(25)	394(26)	517(26)	17(9)	9(9)

* = found a quadruple star, multiple absorptions in sodium profile, see text.

iSpec software by Blanco-Cuaresma et al., 2014

corrected RV prior modelling, checked with respect to telluric lines
fitting region: 4 800 – 6 800 Å – Balmer

VALD line list (Kupka et al., 2011)

library of artificial spectra convolved to current R

initial values from previous
 paper (Hambálek, et al., 2019)
 runs with different starting point
 visual check of fits of Mg I triplet
 Na I doublet and other lines

Parameter	Range	
T _{eff} [K]	3500 6000	
log g	2.5 5.0	
[Fe/H]	-1.0 +0.5	
$[\alpha/\text{Fe}]$	0.0	fixed
$v \sin i [\mathrm{km} \mathrm{s}^{-1}]$	adopted from BF	fixed
$\xi [{\rm km s^{-1}}]$	1.05	
u	0.6	fixed
R	11 500, 31 500, 38 000	fixed

correlation of T_{eff} and log g
 errors from iSpec as sigma
 bi-directional Gaussian

$$E_T = \exp\left(-\frac{(T-T_0)^2}{2\sigma_T^2(1-C^2)}\right), E_{\log g} = \exp\left(-\frac{([\log g] - [\log g_0])^2}{2\sigma_g^2(1-C^2)}\right)$$

with cross-correlation term

$$E_C = \exp\left(C\frac{(T-T_0)([\log g] - [\log g_0])}{\sigma_T \sigma_g (1-C^2)}\right)$$

final function with normalization

$$A \times E_T \times E_{\log g} \times E_C, A = \frac{1}{2\pi\sigma_T\sigma_g\sqrt{1-C^2}}$$

V1298Tau(#02)_TLS_20170203

HD281691(#05) TLS 20170203

HD284266(#06) TLS 20170203

HD284503(#08) TLS 20170204

HD285957(#11) TLS 20170204

10/19

Atmospheric modelling

HD30171(#14)_TLS_20161203

HD286178(#17) TLS 20170204

HD283447(#18) TLS 20170204

10/19

Atmospheric modelling

		Strömgren	photometry	modelling	Asia	igo	iSpec atmospheric modelling			
#	Object name	$T_{ m eff}$ [K]	$\log g$ [dex]	$[Fe/H] \\ [dex]$	Sp. type	$T_{\rm sp}$ [K]	$T_{ m eff}$ [K]	$\log g$ [dex]	[Fe/H] [dex]	
01	HD 285281	4817(557)	4.38(51)	-0.11	K0 V	5150	5146(310)	3.96(66)	-0.33(35)	
02	V1298 Tau	5171(151)	4.57(28)	+0.01	K1 V	4980	5163(244)	4.09(45)	+0.01(23)	
03	HD 284135	5700(236)	4.08(28)	-0.56	G2 V	5790	5323(359)	3.85(1.08)	-0.74(51)	
04	HD 284149	6072(167)	4.16(31)	-0.65	F9 V	6090	5615(292)	4.06(54)	-0.65(56)	
05	HD 281691	5158(211)	4.61(26)	+0.19	K0 V	5150	4960(153)	4.10(25)	-0.46(23)	
06	HD 284266	5854(234)	4.38(39)	-0.13	G9 V	5230	4974(395)	3.90(70)	-0.77(41)	
07	HIP 20782		-	-		-	5114(342)	3.30(67)	-0.76(34)	
08	HD 284503	5427(266)	4.15(39)	-0.23	G2 V	5790	4939(313)	3.78(67)	-0.48(23)	
09	HD 284496	5432(95)	4.43(66)	-0.23	G8 V	5310	5294(195)	4.33(41)	-0.19(30)	
10	HD 285840	5640(44)	4.45	-	-	-	5272(231)	4.36(38)	-0.30(32)	
11	HD 285957	4945(257)	4.79(25)	+0.06		-	4729(182)	3.97(31)	-0.78(24)	
12	HD 283798	5759(128)	4.69(36)	+0.60	G2 IV	5790	5574(310)	3.90(67)	-0.15(33)	
13	HD 283782	4937(660)	4.72(29)	+0.08	G2 IV	5790	5629(338)	3.69(90)	-0.30(64)	
14	HD 30171	5390(258)	4.04(51)	-0.35	G3 IV	5710	5590(471)	3.97(89)	-0.35(51)	
15	HD 31281	5486(355)	3.97(48)	-0.56	G2 V	5790	5183(531)	3.67(1.13)	-0.79(51)	
16	HD 286179	5798(303)	4.63(44)	-0.15	G2 V	5790	5727(226)	4.40(67)	-0.16(22)	
17	HD 286178	4490(87)	4.64	1.1	K0 V	5150	4832(226)	3.92(62)	-0.40(30)	
18	HD 283447	4049(55)	4.71	-	K2 V	4830	4841(265)	3.94(67)	-0.14(26)	
19	HD 283572	5340(63)	4.51	-	G2 IV	5790	5108(387)	3.42(69)	-0.50(13)	
20	HD 285778	5304(254)	4.05(51)	-0.35	G7 V	5390	5343(212)	4.41(56)	-0.34(24)	
21	HD 283518	3770	4.78	9	K3 V	4680	4780(335)	3.68(41)	-0.38(39)	

		Strömgren	photometry	modelling	Asia	igo	iSpec atmospheric modelling			
#	Object name	$T_{ m eff}$ [K]	$\log g$ [dex]	$[Fe/H] \\ [dex]$	Sp. type	$T_{\rm sp}$ [K]	$T_{ m eff}$ [K]	$\log g$ [dex]	[Fe/H] [dex]	
01	HD 285281	4817(557)	4.38(51)	-0.11	K0 V	5150	5146(310)	3.96(66)	-0.33(35)	
02	V1298 Tau	5171(151)	4.57(28)	+0.01	K1 V	4980	5163(244)	4.09(45)	+0.01(23)	
03	HD 284135	5700(236)	4.08(28)	-0.56	G2 V	5790	5323(359)	3.85(1.08)	-0.74(51)	
04	HD 284149	6072(167)	4.16(31)	-0.65	F9 V	6090	5615(292)	4.06(54)	-0.65(56)	
05	HD 281691	5158(211)	4.61(26)	+0.19	K0 V	5150	4960(153)	4.10(25)	-0.46(23)	
06	HD 284266	5854(234)	4.38(39)	-0.13	G9 V	5230	4974(395)	3.90(70)	-0.77(41)	
07	HIP 20782				1.1	-	5114(342)	3.30(67)	-0.76(34)	
08	HD 284503	5427(266)	4.15(39)	-0.23	G2 V	5790	4939(313)	3.78(67)	-0.48(23)	
09	HD 284496	5432(95)	4.43(66)	-0.23	G8 V	5310	5294(195)	4.33(41)	-0.19(30)	
10	HD 285840	5640(44)	4.45	-	-	-	5272(231)	4.36(38)	-0.30(32)	
11	HD 285957	4945(257)	4.79(25)	+0.06	1.0	-	4729(182)	3.97(31)	-0.78(24)	
12	HD 283798	5759(128)	4.69(36)	+0.60	G2 IV	5790	5574(310)	3.90(67)	-0.15(33)	
13	HD 283782	4937(660)	4.72(29)	+0.08	G2 IV	5790	5629(338)	3.69(90)	-0.30(64)	
14	HD 30171	5390(258)	4.04(51)	-0.35	G3 IV	5710	5590(471)	3.97(89)	-0.35(51)	
15	HD 31281	5486(355)	3.97(48)	-0.56	G2 V	5790	5183(531)	3.67(1.13)	-0.79(51)	
16	HD 286179	5798(303)	4.63(44)	-0.15	G2 V	5790	5727(226)	4.40(67)	-0.16(22)	
17	HD 286178	4490(87)	4.64	1.1	K0 V	5150	4832(226)	3.92(62)	-0.40(30)	
18	HD 283447	4049(55)	4.71		K2 V	4830	4841(265)	3.94(67)	-0.14(26)	
19	HD 283572	5340(63)	4.51	-	G2 IV	5790	5108(387)	3.42(69)	-0.50(13)	
20	HD 285778	5304(254)	4.05(51)	-0.35	G7 V	5390	5343(212)	4.41(56)	-0.34(24)	
21	HD 283518	3770	4.78	e.	K3 V	4680	4780(335)	3.68(41)	-0.38(39)	

Evolved post-TTS?

Figure 1. Dependence of the projected rotational velocity, $v \sin i$, on the effective temperature, T_{eff} . Black points are data of MS stars from Mallik et al. (2003). Red error bars represent individual targets of this work. Results from iSpec modelling were used for the temperature. Rotation was measured from the BF method.

Figure 2. Measured EW of Li I 6708 line as a function of target star temperature as modelled by iSpec: Red error bars show individual targets. Underlying figure from Covino et al. (2005), the boundary of post-TTS (PTTS, dashed line) taken from Martin (1997). The solid line shows the upper limit for the Pleiades cluster, while the dotted line indicates the cosmic abundance of lithium.

Reddening

Unreallistic:

• IRSA dust map (full line of sight)

Upper estimate:

• 3D dustmap Bayestar19 by Green et al., 2019

From spectra:

- empirical E(B-V) from EW Na I by Poznanski et al., 2012
- comparison by model spectra vs Asiago data

Reddening

Unreallistic:

• IRSA dust map (full line of sight)

Upper estimate:

• 3D dustmap Bayestar19 by Green et al., 2019

From spectra:

- empirical *E*(B-V) from EW Na I by Poznanski et al., 2012
- comparison by model spectra vs Asiago data

#	Object name	Asiago	Bayestar19	Sodium
01	HD 285281	0.2	< 0.053	0.021(80)
02	V1298 Tau	0.2	< 0.168	-
03	HD 284135	0.0	< 0.027	0.021(80)
04	HD 284149	0.0	< 0.062	0.016(80)
05	HD 281691	0.1	< 0.194	-
06	HD 284266	0.0	< 0.009	0.023(80)
07	HIP 20782	-	< 0.009	0.015(80)
08	HD 284503	0.0	< 0.009	0.016(80)
09	HD 284496	0.1	< 0.018	0.019(80)
10	HD 285840	-	< 0.009	-
11	HD 285957	- H	< 0.053	0.018(80)
12	HD 283798	0.0	< 0.044	
13	HD 283782	0.3	< 0.327	0.027(80)
14	HD 30171	0.1	< 0.062	0.021(80)
15	HD 31281	0.0	< 0.009	0.021(80)
16	HD 286179	0.1	< 0.009	-
17	HD 286178	0.2	< 0.009	0.018(80)
18	HD 283447	0.6	< 0.009	0.028(80)
19	HD 283572	0.0	< 0.009	0.021(80)
20	HD 285778	0.0	< 0.009	-
21	HD 283518	0.3	< 0.044	0.015(80)

Reddening

*T*_{eff}, log g by iSpec Reddening law by Cardelli et al., 1989

Figure 3. Comparison of low-resolution ASI spectrum of V1298 Tau (red) with PHOENIX model spectrum (black) corresponding to the best-fit iSpec result T_{eff} and $\log g$ as indicated on the bottom left pane. Original data (left, panel A) and data de-reddened with E(B-V) = 0.2 (right, panel B).

Previous estimates: $T_{eff} \sim 4000$ K, Our: $T_{eff} \sim 4840$ K Multiple ISM?

Previous estimates: *T*_{eff} ~ 4000 K, Our: *T*_{eff} ~ 4840 K Multiple ISM? Asymetries in RV

Multiple ISM? Broadening function HD 283447 (JD 2457780.3413) Asymetries in RV 0.10 0.08 Arbitrary flux tts18 BF 2457380.4 0.14 0.12 0.10 0.02 0.08 监 0.06 0.00 0.04 -200 200 400 -400600 -6000 RV [km s⁻¹] 0.02 0.00 -600 -200 -400 ó RV (km.s⁻¹)

Previous estimates: $T_{\text{eff}} \sim 4000$ K, Our: $T_{\text{eff}} \sim 4840$ K

Figure 6. Broadening function plot (grey) of HD 283447 from spectrum acquired on January 26, 2017 at Stará Lesná. Overplotted are two rotational profiles (red and blue solid lines).

600

Previous estimates: *T*_{eff} ~ 4000 K, Our: *T*_{eff} ~ 4840 K Multiple ISM? Asymetries in RV

Previous estimates: *T*_{eff} ~ 4000 K, Our: *T*_{eff} ~ 4840 K Multiple ISM? Asymetries in RV

Previous estimates: *T*_{eff} ~ 4000 K, Our: *T*_{eff} ~ 4840 K Multiple ISM? Asymetries in RV

Duchêne et al, 2003 – quadruple from adaptive optics

Evolutionary status

Pisa Stellar models (Tognelli et al., 2011) isochrones (Myr) and evolutionary tracks (M_{\odot})

17/19

Evolutionary status

Radii

 $\log R(L,T) = \frac{1}{2} \left(\log \frac{L}{L_{\odot}} - 4 \log \frac{T_{\text{eff}}}{T_{\text{eff},\odot}} \right)$

 $R\sin i = \frac{P_{\rm rot}\,\nu\sin i}{2\pi R_{\odot}}$

Table 7. Ages and masses from comparing positions in HR diagram to evolutionary PHOENIX models. Distances were set by *Gaia* DR3 parallaxes with reddening inferred from sodium measurement or from the 3D model Bayestar19 (see text). Projected radii calculated from $v \sin i$ and rotation rates from Hambálek et al. (2019). See details on R(L, T) and $R(M, \log g)$ in text. Radii R typeset in *italics* are smaller than minimal $R \sin i$ values.

TTS	Object	$\log T_{\rm eff}$	$\log L/L_{\odot}$	<i>M</i> [M _☉]	age [Myr]	<i>R</i> sin <i>i</i> [R _☉]	$\frac{R(L,T_i)}{[R_\odot]}$	$R(L, T_A)$ [R _☉]	$\frac{R(L,T_G)}{[R_\odot]}$
01	HD 285281	3.711(25)	+0.43(1)	1.45+0.10	3+3	1.85	1.92(38)	1.51(18)	1.08(8)
02	BD+19 656	3.713(20)	+0.07(2)	$1.25^{+0.10}_{-0.10}$	11+5	2.18	1.58(26)	1.67(29)	1.82(34)
03	HD 284135	3.726(28)	+0.48(5)	1.35+0.05	2^{+2}_{-1}	1.17	1.80(37)	1.67(27)	-
04	HD 284149	3.749(22)	+0.28(5)	1.20+0.10	9+5	0.60	1.16(15)	1.15(11)	1.15(10)
05	HD 281691	3.695(13)	-0.01(4)	$1.10^{+0.05}_{-0.05}$	8^{+2}_{-2}	1.16	1.28(14)	1.22(13)	1.36(13)
06	HD 284266	3.697(33)	-0.01(9)	0.95+0.05	5+4	1.20	0.89(13)	1.08(8)	1.17(8)
08	HD 284503	3.694(27)	+0.05(2)	$1.15^{+0.05}_{-0.20}$	5+4	0.62	1.08(13)	0.88(6)	0.91(4)
09	HD 284496	3.724(19)	+0.00(3)	$1.05^{+0.05}_{-0.05}$	11+5	1.37	0.95(8)	0.89(6)	1.09(5)
10	HD 285840	3.722(19)	-0.33(10)	0.80+0.05	28+12	0.78	1.17(12)	1.40(15)	1.32(9)
11	HD 285957	3.675(16)	+0.12(13)	0.75+0.20	2^{+1}_{-1}	1.57	1.35(15)	1.54(18)	1.34(11)
12	HD 283798	3.746(24)	+0.19(1)	$1.10^{+0.10}_{-0.10}$	12+5	0.51	1.33(19)	1.26(13)	1.39(13)
13	HD 283782	3.750(25)	+0.96(18)	2.10+0.35	3^{+3}_{-2}	3.17	3.28(1.94)	2.04(63)	2.16(67)
14	HD 30171	3.747(35)	+0.91(6)	$2.10^{+0.10}_{-0.50}$	3+4	2.47	2.53(81)	2.15(55)	-
15	HD 31281	3.715(42)	+0.54(5)	1.20+0.25	2^{+1}_{-1}	1.14	1.95(49)	1.62(25)	1.71(25)
16	HD 286179	3.758(17)	+0.19(12)	$1.05\substack{+0.10\\-0.10}$	15+7	1.02	0.93(8)	0.89(6)	0.91(4)
17	HD 286178	3.684(20)	+0.18(7)	1.15+0.15	3^{+2}_{-1}	1.57	2.39(63)	1.49(20)	-
18	HD 283447	3.685(23)	+0.36(4)	$1.20^{+0.10}_{-0.30}$	2^{+1}_{-1}	2.60	2.51(53)	1.30(13)	-
19	HD 283572	3,708(32)	+0.53(4)	1.55+0.10	2^{+2}_{-1}	2.50	2.30(71)	1.78(33)	1.88(34)
20	HD 285778	3.728(17)	+0.82(1)	$2.00^{+0.05}_{-0.30}$	2^{+1}_{-1}	0.99	1.24(14)	1.05(8)	1.17(6)
21	HD 283518	3.679(29)	+0.14(4)	1.15+0.10	3+3	2.62	2.02(37)	1.49(17)	1.03(6)

Note: HD 283447 (TTS 18) is modelled as a single star. However, $\log L/L_{\odot}$ is contaminated by third light in the system. The minimal radius $R \sin i$ is not affected.

Summary

- 21 WTTS 178 spectra, computed RV, v sin i
- 160 spectra used for atmospheric modelling for T_{eff}, log g, [Fe/H]
 for each mulitple LSQ minimalization with iSpec
- 18 WTTS compared to Asiago spectral atlas, all emission in Ca
 measured EW Li 6104 & 6708 Å for evolution status 8 stars hot enough for post-TTS
- measured EW of ISM Na doublet for reddening estimation
- found suspected SB1 (TTS14 outside quadruple TTS18) + follow-up on targets with changing RVs
- calculated minimum radii R sin i
- ages and masses from evolutionary models (young, IMTTS, WTTS)

Spectroscopy of selected T Tauri stars

Thank you !

This work was supported by grants: APVV-20-0148 and VEGA 2/0031/22

Note on Gaia DR3 solutions

1		Strömgren photometry			Asiago		i	iSpec modelling			Gaia DR3 solution		
#	Object name	T_{eff} [K]	$\log g$ [dex]	[Fe/H] [dex]	Sp. type	$T_{\rm sp}$ [K]	$T_{\rm eff}$ [K]	$\log g$ [dex]	[Fe/H] [dex]	$T_{\rm eff}$ [K]	$\log g$ [dex]	[Fe/H] [dex]	
01	HD 285281	4817(557)	4.38(51)	-0.11	K0 V	5150	5146(310)	3.96(66)	-0.33(35)	6004(9)	3.89(1)	-0.79(6)	
02	V1298 Tau	5171(151)	4.57(28)	+0.01	K1 V	4980	5163(244)	4.09(45)	+0.01(23)	4940(31)	4.22(1)	-0.34(3)	
03	HD 284135	5700(236)	4.08(28)	-0.56	G2 V	5790	5323(359)	3.85(1.08)	-0.74(51)	6105(9)	4.21(0)	-0.39(1)	
04	HD 284149	6072(167)	4.16(31)	-0.65	F9 V	6090	5615(292)	4.06(54)	-0.65(56)	5035(31)	4.31(1)	-0.52(4)	
05	HD 281691	5158(211)	4.61(26)	+0.19	K0 V	5150	4960(153)	4.10(25)	-0.46(23)	5245(46)	4.30(1)	-0.81(6)	
06	HD 284266	5854(234)	4.38(39)	-0.13	G9 V	5230	4974(395)	3.90(70)	-0.77(41)	-	-	-	
07	HIP 20782		-	1.4	2.0		5114(342)	3.30(67)	-0.76(34)	5801(4)	4.32(0)	-0.32(0)	
08	HD 284503	5427(266)	4.15(39)	-0.23	G2 V	5790	4939(313)	3.78(67)	-0.48(23)	6161(86)	3.80(5)	-3.08(66)	
09	HD 284496	5432(95)	4.43(66)	-0.23	G8 V	5310	5294(195)	4.33(41)	-0.19(30)	5143(14)	4.33(0)	-0.46(1)	
10	HD 285840	5640(44)	4.45	-	-	-	5272(231)	4.36(38)	-0.30(32)	9766(21)	4.06(1)	+0.20(4)	
11	HD 285957	4945(257)	4.79(25)	+0.06			4729(182)	3.97(31)	-0.78(24)	4959(23)	4.13(1)	-0.35(2)	
12	HD 283798	5759(128)	4.69(36)	+0.60	G2 IV	5790	5574(310)	3.90(67)	-0.15(33)	5645(23)	4.28(0)	-0.37(2)	
13	HD 283782	4937(660)	4.72(29)	+0.08	G2 IV	5790	5629(338)	3.69(90)	-0.30(64)	5752(6)	3.73(1)	-0.01(0)	
14	HD 30171	5390(258)	4.04(51)	-0.35	G3 IV	5710	5590(471)	3.97(89)	-0.35(51)		-		
15	HD 31281	5486(355)	3.97(48)	-0.56	G2 V	5790	5183(531)	3.67(1.13)	-0.79(51)	5766(14)	4.11(0)	-0.45(1)	
16	HD 286179	5798(303)	4.63(44)	-0.15	G2 V	5790	5727(226)	4.40(67)	-0.16(22)	5842(8)	4.29(0)	-0.35(1)	
17	HD 286178	4490(87)	4.64	-	K0 V	5150	4832(226)	3.92(62)	-0.40(30)	-	-	-	
18	HD 283447	4049(55)	4.71	-	K2V	4830	4841(265)	3.94(67)	-0.14(26)	-		-	
19	HD 283572	5340(63)	4.51	-	G2 IV	5790	5108(387)	3.42(69)	-0.50(13)	5768(3)	3.94(0)	-0.21(0)	
20	HD 285778	5304(254)	4.05(51)	-0.35	G7 V	5390	5343(212)	4.41(56)	-0.34(24)	5410(16)	4.27(0)	-0.39(2)	
21	HD 283518	3770	4.78		K3 V	4680	4780(335)	3.68(41)	-0.38(39)	5353(41)	3.80(1)	-0.41(4)	