

ASPIS – PART I.

Data analysis and preprocessing

Šimon Mackovjak

Viera Krešňáková

Peter Butka

Matej Varga

Samuel Amrich

Adrián Kundrát

Silvia Kostárová

What is ionospheric scintillation

- Ionospheric scintillation is the rapid modification of radio waves.
- Propagating through ionosphere.
- Caused by small scale structures in the ionosphere.

What is ionospheric scintillation

- Ionosphere is the ionized part of the upper atmosphere.
- Different layers have different densities.
- Because gr. field is present

=> Rayleigh—Taylor instability

Coster, A.J. and Yizengaw, E. (2021). GNSS/GPS Degradation from Space Weather. In Space Weather Effects and Applications (eds A.J. Coster, P.J. Erickson, L.J. Lanzerotti, Y. Zhang and L.J. Paxton). https://doi.org/10.1002/9781119815570.ch8

Why should we bother

23. 6. 2023

Bezovec 2023

Satellite communication

 Artificial satellites to provide communication links between various points on Earth.

 Scintillations may cause loss of communication capabilities.

Global satellite navigation (GNSS)

• Artificial satellites that autonomous geopositioning.

 Scintillations may cause loss of geopositioning capabilities.

• Affects all main systems: GPS, GLONASS, Galileo.

Previous work

Other models - Family photo

Scintillations (ASPIS) - Data analysis and preprocessing

Other models - Family photo

Other works in field

Fremouw and Rino (1973)

S 4 on VHF/UHF, under weak-scatter conditions

WBMOD (1985)

15-min peak-to-peak scintillation indices

GISM (1999)

Global ionospheric scintillation model

L. F. C. Rezende (2010)

Prediction using data mining techniques

Main problems

Bezovec 2023

Current problems

Low accuracy and precision

Short time of prediction

Our approach

- Data driven method
 Years of measurements, with an emphasis on physics
- Using of deep neural network

Space parameters

23. 6. 2023

Space parameters

Sources of data

OMNIWeb

NRLMSISE-0

IRI-2016

Select Date and Time
Year(1958-2020): 2000
Month: January V Day(1-31): 01
Note:If date is outside the Ap index range (1958/02/14-2023/6/13), then STORM model will be turned off.
Time Universal ✓ Time (0 24.0 in decimal hours): 1.5
Select Coordinates
Coord. Type Geographic ✓ Latitude(-90 90. deg.): 50. Longitude(0 360. deg.) 40.
Height (km, from 60. to 2000.): 100.
Select profile type and range:
Height [60 2000. km] ✓ Start
Submit Reset
Optional Input:
Sunspot number; R12 (0 400.) Ionospheric index, IG12 (-50 400.)
F10.7 radio flux, daily (0 400.) F10.7 radio flux, 81-day (0 400.)
Electron content: Upper boundary (110 10000. km)
Ne Topside NeQuick ✓ Ne F-peak URSI ✓ F-peak storm model on ✓ F-peak height AMTB2013 ✓
Bottomside Thickness ABT-2009 V F1 occurrence probability: Scotto-1997 no L V
Auroral boundaries on V E-peak auroral storm model off V D-region model IRI-95 V
Te Topside TBT2012+SA ✓ Ion Composition RBV10/TBT15 ✓
Note: User may specify the following 5 parameters only for Profile type 'Height':
F2 peak density (NmF2) (10 ⁹ - 10 ¹⁴ m ⁻³) or F2 plasma frequency (foF2) (2,-14, MHz): 0.
F2 peak height (hmF2) (100 1000. km) or Propagation factor M(3000)F2 (1.5 - 4.): 0.
E peak density (NmE) (10 ⁶ - 10 ¹⁴ m ⁻³) or E plasma frequency (foE) (0.1-14. MHz) 0.
E peak height (hmE) (70200. km); 0. Bottomside thickness (B0) (50500. km); 0.
Select output form:

Bezovec 2023

17

Statistical analyses

- 55 parameters
- 1 hour resolution

- Box plots
- Observing of long-term changes

What is ANOVA?

- Analysis of variance (ANOVA).
- Used to analyze the differences among mean.

 If the average variation between groups is bigger compared to the average variation within groups, then groups mean is not equal to the others.

ANOVA analyses of data

- Important parameters to consider.
- Possible use in models.
- Kp index
- Bz GSE
- AE index
- PC(N)
- Electric field

Preprocessing of archive Data

Scintillation parameters

• Phase scintillation

$$\sigma_{\varphi} = \langle \varphi^2 \rangle - \langle \varphi \rangle^2$$

• Amplitude scintillation
$$S_4^2 = \frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}$$

Sources of data

 Canadian high arctic ionospheric network (CHAIN).

 Every hour published measurements.

- 2008-> present
- 26 stations

CHAIN

Problem of sphere

• How to interpret measurement.

 Measurement create ruled surface.

• Ionosphere is between sphere.

Transformation to Sphere

 Nontrivial task of transforming

ruled surface ->sphere

$$|\vec{x}| = \sqrt{R_{Earth}^2 + r^2 + 2R_{Earth}rsin(\alpha)}$$

$$\varphi_x = \arcsin\left(\frac{\left(R_{Earth} + rsin(\alpha)\right)\sin(\varphi) + rcos(\alpha)\cos(A)\cos(\varphi)}{|\vec{x}|}\right)$$

For binning

$$a = \sin\left(\frac{\Delta l}{2}\right) + \cos(l_1) \cdot \cos(l_2) \sin^2\left(\frac{\Delta \varphi}{2}\right)$$
$$c = 2 \cdot \arctan\left[\sqrt{a}; \sqrt{a-1}\right]$$
$$= 2 \cdot \arctan\left(\frac{\sqrt{a}}{\sqrt{a-1}}\right)$$

 $l_{x} = \arctan\left(\frac{\left(R_{Earth} + rsin(\alpha)\right)\cos(\varphi)\sin(l) - rcos(\alpha)\left(\cos(A)\sin(\varphi)\sin(l) - \sin(A)\cos(l)\right)}{\left(R_{Earth} + rsin(\alpha)\right)\cos(\varphi)\cos(l) - rcos(\alpha)\left(\cos(A)\sin(\varphi)\cos(l) + \sin(A)\sin(l)\right)}\right)$

Binning

 Uniform binning of ionosphere

Central of mass

 Nearest bin centrum for intersection of ionosphere and measurement

Example of event observation

Summary

23. 6. 2023

Results

Summary

Space parameters

Data interpretation

Results

Machine learning

Future work

 Examination of possibilities of better measurement interpretation.

• Tracking of changes in ionosphere.

 Best way for backward transformation visualization.

Before | After

Archive data and experiences

Working forecast

Thanks for your attention

Bezovec 2023

Conference of Young Astronomers

23. 6. 2023

Wait for part II.

Disclaimer

ASPIS is supported by the government of Slovakia through ESA contracts under the PECS (Plan for European Cooperating States).

ESA disclaimer: The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

Apendix

23. 6. 2023

Bezovec 2023

Conference of Young Astronomers

