Spectral modeling of flares on AD Leo

Authors: Mgr. Jiří Wollmann, prof. RNDr. Petr Heinzel, DrSc.

In collaboration with: Dr. Petr Kabáth, Mgr. Magdaléna Špoková, Dr. Raine Karjalainen

Outline

- 1. Introduction
 - Solar flares
 - Stellar flares
- 2. Model
 - Setup
 - Results and comparison

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- 3. Conclusions
- 4. Future work

Introduction - solar flares

- sudden brightenings on the solar surface
- energy is released due to magnetic reconnection

- typical time-scale tens of minutes to hours
- phases:
 - pre-flare
 - impulse
 - gradual

Introduction - stellar flares

- most common on K and M stars
- compared to Sun they tend to have vast and strong magnetic fields

- energy released during solar flares 10²⁸ 10³² erg
- energy released during typical stellar flares on M stars 10³¹ - 10³⁴ erg (super-flares up to 10³⁶ erg)

Introduction - stellar flares - why study them

- expand our knowledge of processes in stellar atmospheres
- every other M type star has a planet in habitable zone (Tuomi et al., 2019)

flares affect planet's habitability, especially their atmosphere

Introduction - stellar flares - spectral line asymmetries

- some spectral lines show asymmetrical profile compared to the rest profile during flares - origin is not well understood
- we assume they are caused by chromospheric flows of plasma

Source: Muheki et al. (2020)

Introduction - solar flares - standard model

Introduction - solar flares

video - coronal rain

Observations - AD Leo

- spectral type dM3.5eV
- \blacktriangleright m \approx 0.4 M_{\odot}
- frequently studied star
- statistically a flare occurs once every two hours
- spectra in visible region with exposure time 10 15 minute using 2m Perek telescope in Ondřejov

Observations - H α profile changes

▲ロ ▶ ▲ 圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 回 ▶

Observations - H α profile changes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model - Setup

- aims to probe origin of asymmetry of spectral lines profiles
- current implementation solves $H\alpha$ line
- solution of radiation transfer through flare loops using approximation of cloud model
- clouds move along circular loops
- flare occurs at the stellar disc center with respect to the observer

Model - Setup

▲ロト ▲御ト ▲ヨト ▲ヨト 三回 のへの

Model - Setup - specific intensity

 approximation of two-level atom and constant source function through a single cloud

$$\triangleright S = \epsilon B(\lambda_0) + (1 - \epsilon) \bar{J}$$

source function depends on velocity of cloud with respect to the stellar surface

$$\blacktriangleright I_{\lambda}(0) = I_{\lambda}(\tau_{\lambda})e^{-\tau_{\lambda}} + S(v)(1-e^{-\tau_{\lambda}})$$

parameters: temperature, optical thickness, electron density, radius of circular loop, turbulent velocity

Model - Preliminary results - single cloud spectrum

Model - Preliminary results - spectrum of flare arcade

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model - Preliminary results - flare spectral line effect

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Model - Comparison with observations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusions

- \blacktriangleright we observed asymmetrical profiles of H $\!\alpha$
- simple model of radiation of circular flare loops yields asymmetrical profile that matches *some* observations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Future work

- simulate synthetic spectra using RHD code Flarix
- generalise location of flare on the stellar disc with respect to the observer
- use more robust methods of plasma motion simulation along flare loops

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで