

A survey of hydrogen emission in meteors

Mgr. Adriana Pisarčíková

doc. RNDr. Juraj Tóth, PhD.

RNDr. Pavol Matlovič, PhD.

Content

- motivation and aim of our work
- topic overview
- processing methods: used softwares
- results: H emission in meteors
- next work laboratory ablation experiment in plasma wind tunnel

Motivation and aim

Motivation:

> H-alpha line - well distinguishable spectral feature indicating the presence of organic matter or water in meteor spectra

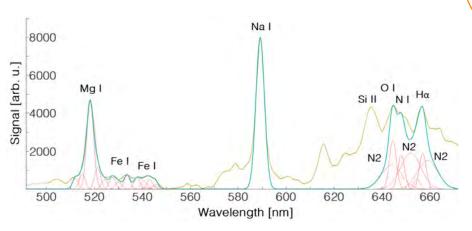
• Aim:

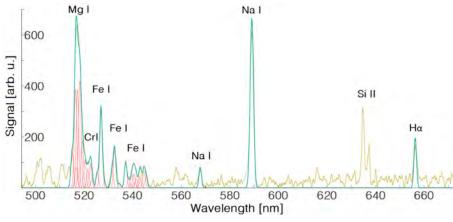
➤ investigating the presence of organic content in meteoroids by studying the presence and relative intensity of the H-alpha line in meteor spectra (relation to orbital, atmospheric and structural parameters)

Topic overview

- meteors observed by the AMOS network (Slovak stations+ Canary +Hawaii Islands)
- sample: meteors with absolute magnitude in range -1 to -13 (mm-dm):
- > 270 meteor spectra (2013-2019 Spec)+12(Spec-HR)
- > with H emission: 60 meteor spectra

	AMOS-Spec	AMOS-Spec-HR
Camera:	DMK 51 AU02	Point-Grey 2048x1536
Lens:	30 mm, f/3.5	6 mm, f/3.5
Grating:	1000 grooves/mm	1000 grooves/mm
Resolution:	1.3 nm/px	0.5 nm/px
FOV:	100 deg	60 x 45 deg
Lim.mag.:	+4.0 / -2	+6.0 / -1.5


Technical parameters of spectral cameras.



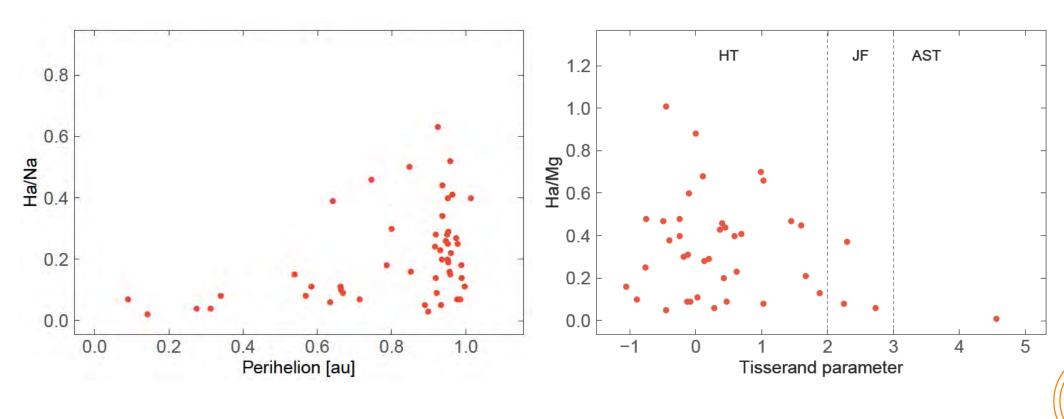
Meteor M20180216_193551 captured along with the spectrum by the AMOS-Spec station in AGO Modra.

Data processing

- video recording: UFOCapture
- detection and localization of meteors and stars: AMOS software
- astrometry, atmospheric trajectory and heliocentric orbit: Meteor Trajectory
- spectral reduction and intensity profile: ImageJ
- lines fitting: Fityk

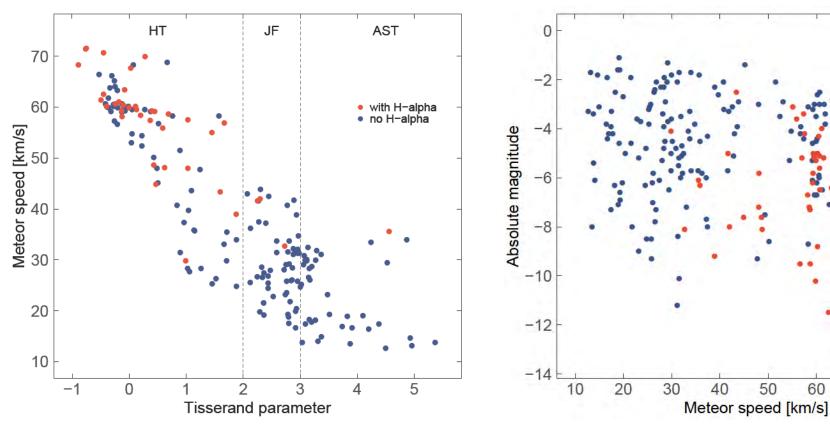
Examples of the fit of the synthetic spectra (blue-green) on measured meteor spectra (yellow) as a convolution of the main emission contributions (red) in the 500-665 nm region (upper panel-Spec, lower Spec-HR).

Our strategy for evaluating the presence of H emission



- several works confirmed the detection of H-alpha line emission in the spectra of Perseids, Geminids, Leonids, ..., but the overall diversity between meteoroids on larger sample from different sources has not been studied yet
- statistical evaluation:
 - o in which meteors the H-alpha line occurs
 - o dependence on the orbital origin
 - dependence on the structure of the material
 - function of ablation conditions
 - o variation in a particular meteor shower (Perseids) the same parent body

Results: volatile character of H



The observed $H\alpha/Na$ intensity ratio as a function of perihelion distance for meteors with H-alpha line.

The observed $H\alpha/Mg$ intensity ratio as a function of Tisserand parameter for meteors with H-alpha line.

Results: Meteor spectra with and with no H-alpha line

The observed meteor speed as a function of Tisserand parameter.

with H-alphano H-alpha 50 60 80 70

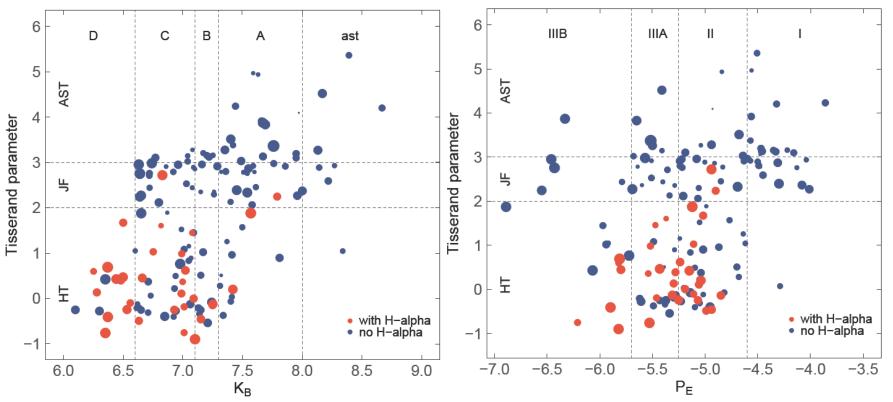
Meteor speed vs absolute magnitude.

Results: Material strength classification

 K_B

 C_3

C2


C1

 P_{E}

IIIB

IIIAi

IIIA

	shore period			
_	Dense cometary	В	-	
_	Carbonaceous chondrites	Α	II	
1 _	Ordinary chondrites asteroids	ast	I	
5 -	Classification of meteoroid material strength based on KB and PE parameters (Ceplecha 1988).			

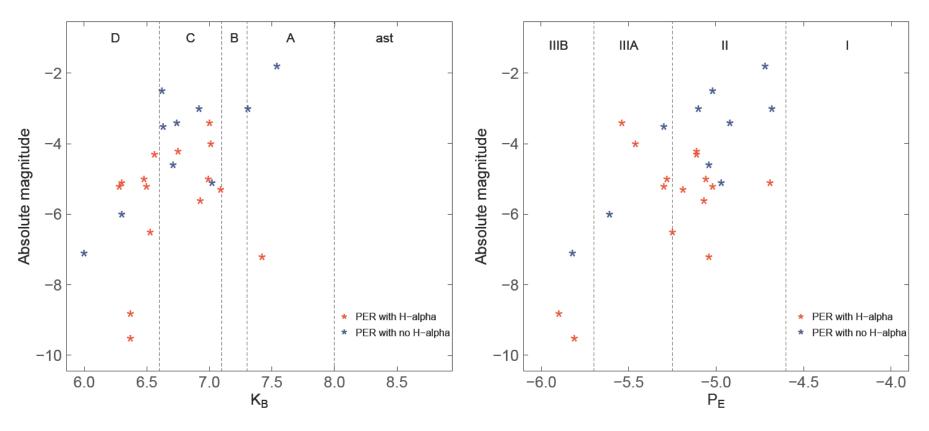
Material

Fragile cometary

Regular cometary

long-period

Regular cometary


long-period Regular cometary

short-period

Material strength classification of all meteoroids observed by multiple stations based on the KB (left) and PE (right) parameter as a function of the Tisserand parameter. Sizes of meteoroid marks reflect meteor absolute magnitudes.

Results: Perseids and the detection of H emission

Material strength classification of Perseids observed by multiple stations based on the KB (left) and PE (right) parameter as a function of the absolute magnitude.

Next work

- to compare the intensity of the H- α lpha line with larger samples of other meteor showers (comparable velocities with Perseids)
- to analyze the occurrence of H emission:
 - in high resolution spectra (AMOS-Spec-HR)
 - in meteorite spectra (ESA PECS MetSpec project)

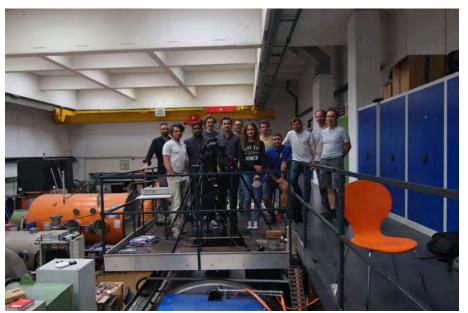
Meteorite ablation experiment campaign

- test conditions corresponding 80 km altitude and 10 km/s speed
- spectra captured by AMOS-Spec-HR and Echelle spectograph

1. campaign	2. campaign	
Allende (CV ₃) – fall	Northwest Africa 869 (L3-6) – find	
Buzzard Coulee (H4) – fall	Kheneg Ljouâd (LL5/6) – fall	
Chelyabinsk (LL5) – fall	Bilanga (Diogenite) – fall	
Knyahinya (L/LL5) — fall	Mount Joy (Iron IIAB) – find	
Pultusk (H5) – fall	Murchison (CM) – fall	
Ragland (LL3.4) – find	Dhofar 1575 (Ureilite) — find	
	Sariçiçek (Howardite) – fall	
	Stannern (Eucrite) – fall	
	Norton County (Aubrite) – fall	

Meteorite ablation experiment campaign

Bilanga 3.2730 g


Test preparation photos from the 2. testing campaign.

Meteorite ablation experiment campaign

Test preparation photos from the 2. testing campaign (author: J. Vaubaillon).

Chelyabinsk meteorite ablation

Meteorite ablation campaign - preliminary results

- 1. campaign:
- > H-alpha line- significant in Ragland
- > CN emission- significant in Allende (carbonaceous meteorite) Echelle
- 2. campaign:
- > H-alpha line- in most spectra before ablation why?

Summary

- Hydrogen emission in meteors:
 - detection of volatile character of hydrogen
 - o detection of hydrogren mainly in faster and brighter meteors from cometary showers
 - o fragile material strength
 - o in Perseids variation of the hydrogen emission was mainly related to the meteor brightness
- Hydrogen emission in meteorite spectra:
 - H-alpha and CN emission

Thank you for your attention.

