

Symbiotic binaries at P. J. Šafárik University

Jaroslav Merc^{1,2}, Rudolf Gális¹ and collaborators

¹ Institute of Physics, P. J. Šafárik University in Košice, Slovakia
 ² Astronomical Institute of Charles University in Prague, Czech Republic

1st October 2020 | Bezovec 2020: Astronomical Research in Slovakia

Outline

• Symbiotic binaries

- Spectral appearance
- Importance

• Symbiotics at UPJŠ

- New Online Database of Symbiotic Variables
- Z And-type symbiotics
- Symbiotic candidates
- New symbiotic stars

Conclusions

21 "symbiotic" publications in last 5 years (2015 – 2020) + 2 accepted (arXiv)

- + 1 submitted
- + 3 in preparation

Symbiotic binaries

References:

Kenyon, 1986, The Symbiotic Stars *ISBN: 978-0521093316* Mikołajewska, 2012, Baltic Astronomy *doi: 10.1515/astro-2017-0352* Munari, 2019, Review in The Impact of Binary Stars on Stellar Evolution *arXiv:1909.01389* Merc et al., 2019, Astronomische Nachrichten *doi: 10.1002/asna.201913662*

- strongly **interacting binary** systems
 - mass transfer via stellar wind or Roche lobe overflow
 - open binaries
- consist of a cool giant and hot compact star, mostly a white dwarf
 - circumbinary envelope
- significant variability, "composite" spectra

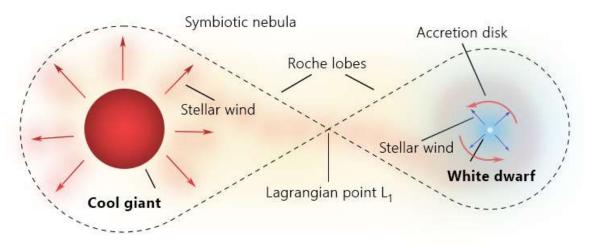


Figure: Simplified model of a symbiotic binary.

Symbiotic binaries Spectra

Cl Cyg observation: ARAS Group

References:

Skopal et al., 2015, New Astronomy *doi: 10.1016/j.newast.2013.10.009* **Teyssier,** 2019, Contributions of the Astronomical Observatory Skalnaté Pleso

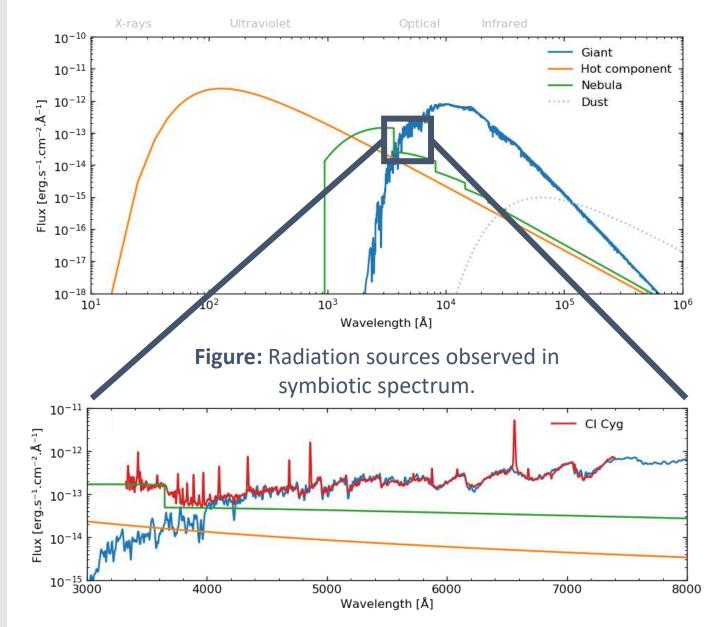
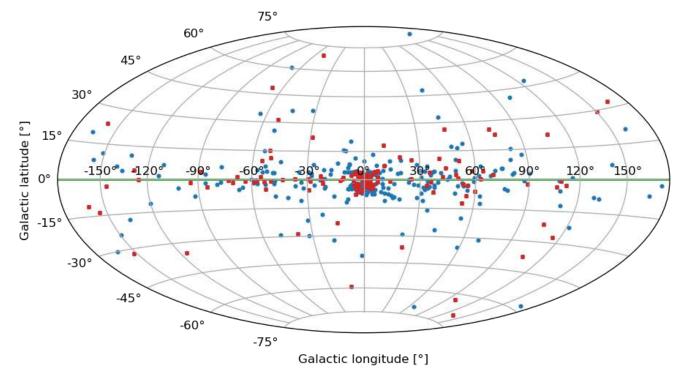


Figure: Optical and near-UV spectrum of CI Cyg.

Symbiotic binaries Importance

References:

Kenyon, 1986, The Symbiotic Stars ISBN: 978-0521093316 Mikołajewska, 2013, Proceedings of the International Astronomical Union doi: 10.1017/S1743921312014925 Iłkiewicz et al., 2019, Monthly Notices of the Royal Astronomical Society doi: 10.1093/mnras/stz760


- unique astrophysical laboratories
 - stellar interaction mass transfer, accretion processes
 - stellar winds and their collision
 - formation and collimation of jets
 - dust formation and destruction
 - thermonuclear **outbursts**
- important in study of **stellar evolution**
 - evolution of binaries
 - possible **supernovae la** progenitors

References:

Merc et al., 2019, RNAAS doi: 10.3847/2515-5172/ab0429 Merc et al., 2019, Astronomische Nachrichten doi: 10.1002/asna.201913662 Merc et al., 2020, Contributions of the Astronomical Observatory Skalnaté Pleso doi: 10.31577/caosp.2020.50.2.426

- more than **400** in the Milky Way
- concentration towards Galactic plane
- New Online Database of Symbiotic Variables

Figure: Distribution of the galactic symbiotic stars according to their galactic coordinates.

References:

Merc et al., 2019, RNAAS doi: 10.3847/2515-5172/ab0429 Merc et al., 2019, Astronomische Nachrichten doi: 10.1002/asna.201913662 Merc et al., 2020, Contributions of the Astronomical Observatory Skalnaté Pleso doi: 10.31577/caosp.2020.50.2.426

- almost **160 objects** in the Local Group
- advantage in known distance

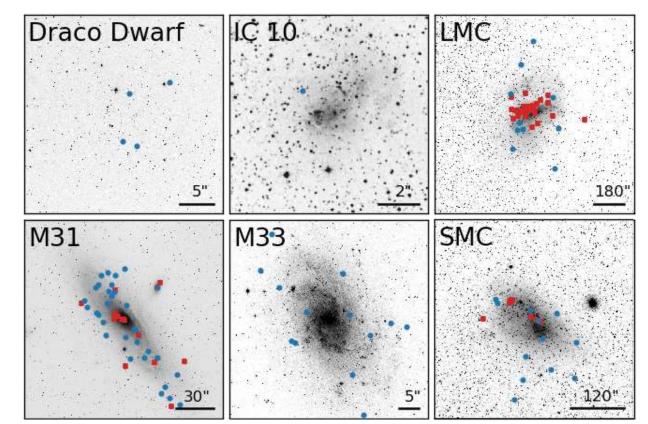
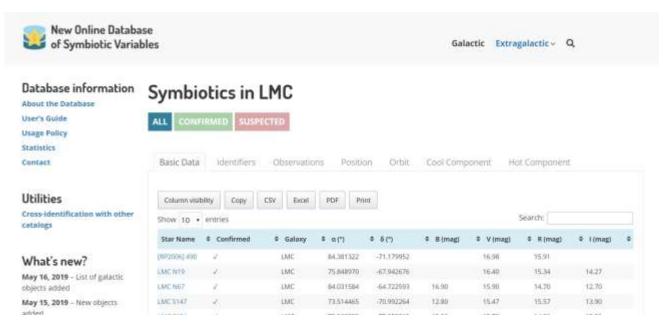


Figure: Position of extragalactic symbiotic stars in their host galaxies.



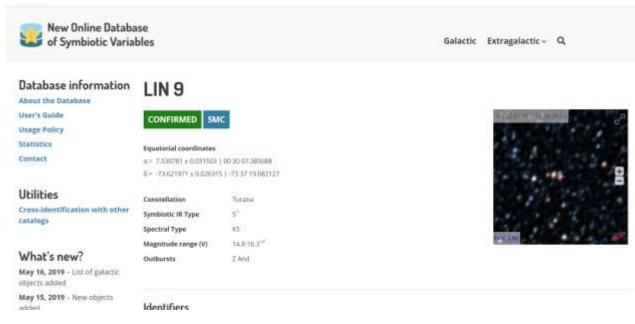
References:

Merc et al., 2019, RNAAS doi: 10.3847/2515-5172/ab0429 Merc et al., 2019, Astronomische Nachrichten doi: 10.1002/asna.201913662 Merc et al., 2020, Contributions of the Astronomical Observatory Skalnaté Pleso doi: 10.31577/caosp.2020.50.2.426

- tables with data
- object pages

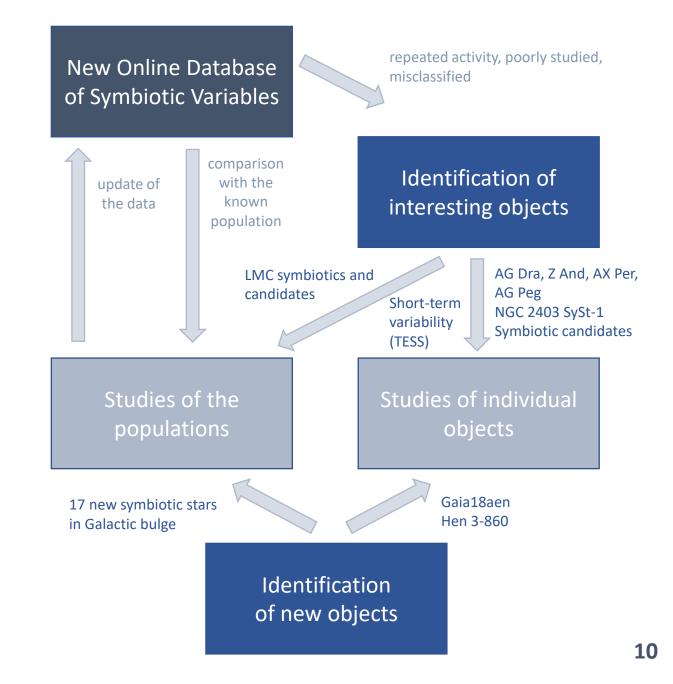
http://astronomy.science.upjs.sk/symbiotics/

Figure: Catalog data for symbiotic stars in LMC.



References:

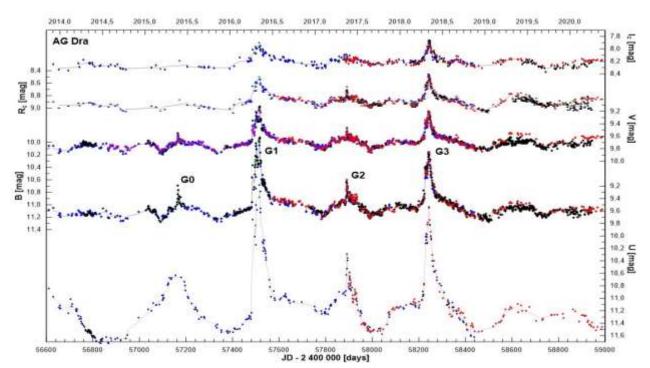
Merc et al., 2019, RNAAS doi: 10.3847/2515-5172/ab0429 Merc et al., 2019, Astronomische Nachrichten doi: 10.1002/asna.201913662 Merc et al., 2020, Contributions of the Astronomical Observatory Skalnaté Pleso doi: 10.31577/caosp.2020.50.2.426


- tables with data
- object pages

http://astronomy.science.upjs.sk/symbiotics/

Figure: Example of the object page of symbiotic star LIN9.

Symbiotics at UPJŠ Workflow

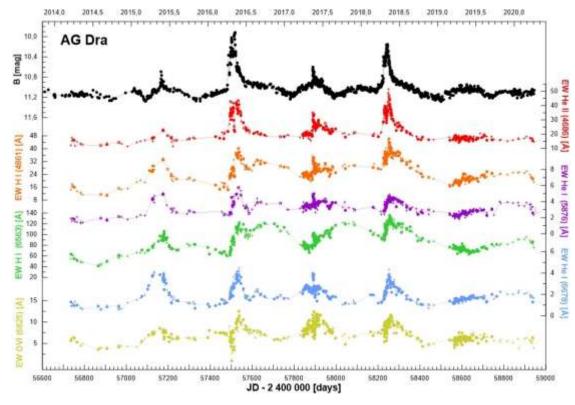


AG Draconis

References:

Merc et al., 2017, Proceedings of Science doi: 10.22323/1.315.0060 Gális et al., 2019, Contributions of the Astronomical Observatory Skalnaté Pleso Merc et al., 2019, Contributions of the Astronomical Observatory Skalnaté Pleso Gális, Merc, Leedjärv et al., in preparation

- seven years of flat quiescence following the 2006-08 major outbursts
- new activity started in 2015
- four minor outbursts
- returned to quiescence in 2018/2019

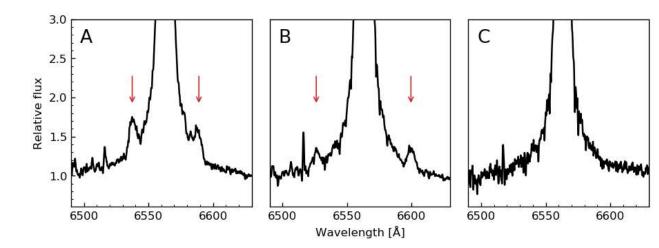

Figure: The recent light curves of AG Dra (2014 – 2020). **11**

AG Draconis

References:

Merc et al., 2017, Proceedings of Science doi: 10.22323/1.315.0060 Gális et al., 2019, Contributions of the Astronomical Observatory Skalnaté Pleso Merc et al., 2019, Contributions of the Astronomical Observatory Skalnaté Pleso Gális, Merc, Leedjärv et al., in preparation

- spectroscopic campaigns focused on the recent activity
- more than **750 spectra** (2014 2020)
 - various observers (many from the ARAS Group, recently M. Vrašťák)


Figure: EWs of selected emission lines.

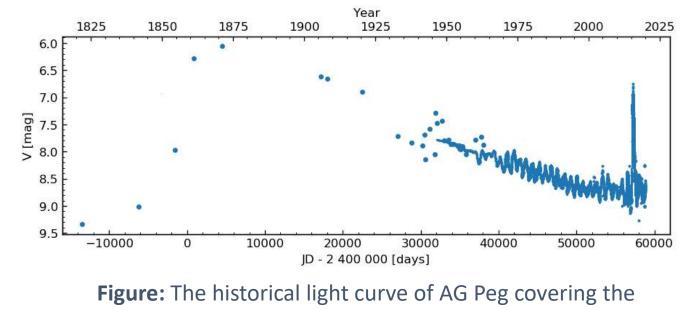
Z Andromeda

References:

Skopal et al., 2018, Astrophysical Journal doi: 10.3847/1538-4357/aabc11
Merc et al., 2019, Open European Journal on Variable Stars
Merc et al., 2019, Contributions of the Astronomical Observatory Skalnaté Pleso

- current activity started in 2000
 - recent outburst recorded at the turn of 2017 and 2018
- Z And is one of few symbiotic stars producing jets
 - observed during maxima in 2006 and 2009-2010

• not during the recent outburst

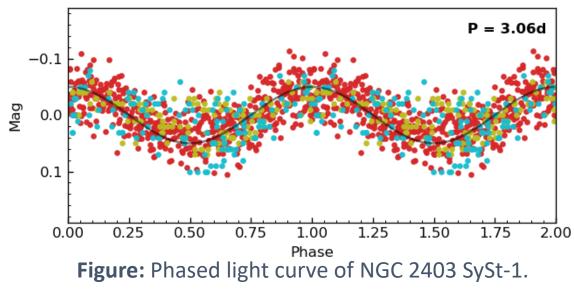

Figure: The jet components (marked with red arrows) of the H α emission line. The spectra are from 2006 (A), 2010 (B) and from 2018 (C).

AG Pegasi

References:

Skopal et al., 2017, Astronomy & Astrophysics *doi: 10.1051/0004-6361/201629593* **Merc et al.,** 2019, Contributions of the Astronomical Observatory Skalnaté Pleso

- slowest symbiotic nova
- showed Z And-type outburst 165 years after its nova-like flare-up
 - transition from symbiotic nova to classical symbiotic star
 - also some other had gone through this evolution?

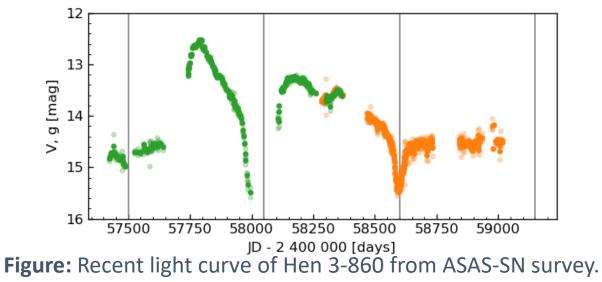

period of 1821 to 2020.

NGC 2403 SySt-1

References:

Merc, Gális, Kára et al., 2020, accepted in Monthly Notices of the Royal Astronomical Society *arXiv: 2009.14784*

- classified as a possible symbiotic binary, cataclysmic variable, supernova remnant, H II region
 - located in the field of NGC 2403
 - X-ray source
- our **multiwavelength analysis** proved that this object is **an active, young red dwarf**
 - data from Gaia, TESS, ASAS-SN, ZTF, XMM-Newton, Chandra, Swift, 2MASS, WISE

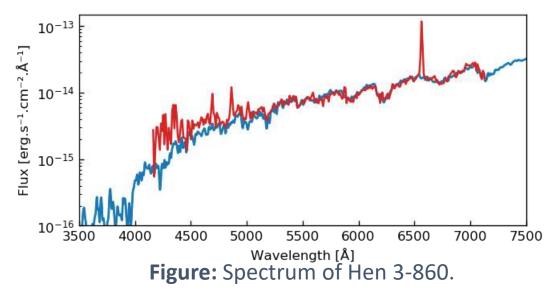


Hen 3-860

Spectrum: P. Velez, ARAS Group

References: Merc, Gális, Velez et al., in preparation

- selected for spectroscopic campaign based on the **peculiar light curve**
 - outburst in 2018 2019 (ASAS-SN)
 - eclipse-like features
- spectrum **confirmed** the symbiotic nature
 - M2 III continuum, emission lines of H I, He I, He II
- orbital period of **550 days**
- two or three outbursts in past



Hen 3-860

Spectrum: P. Velez, ARAS Group

References: Merc, Gális, Velez et al., in preparation

- selected for spectroscopic campaign based on the **peculiar light curve**
 - outburst in 2018 2019 (ASAS-SN)
 - eclipse-like features
- spectrum **confirmed** the symbiotic nature
 - M2 III continuum, emission lines of H I, He I, He II
- orbital period of **550 days**
- two or three outbursts in past

Hen 3-860

Spectrum: P. Velez, ARAS Group

References: Merc, Gális, Velez et al., in preparation

- selected for spectroscopic campaign based on the peculiar light curve
 - outburst in 2018 2019 (ASAS-SN)
 - eclipse-like features
- spectrum **confirmed** the symbiotic nature
 - M2 III continuum, emission lines of H I, He I, He II
- orbital period of **550 days**
- two or three outbursts in past

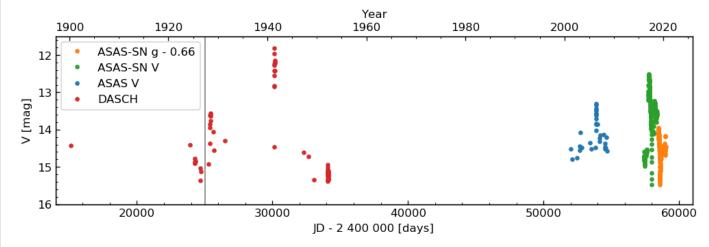


Figure: Historical light curve of Hen 3-860.18

Gaia18aen

References:

Merc, Mikołajewska, Gromadzki et al., 2020, accepted in Astronomy & Astrophysics *arXiv: 2009.14709*

- at the beginning of 2018, Gaia detected the brightening of Gaia18aen
 - soon classified as a 'nova?'
 - light curves and the spectra confirmed the symbiotic nature
 - first ever symbiotic star discovered by Gaia

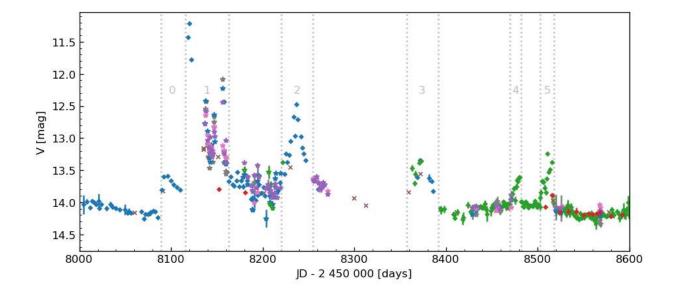


Figure: The light curve of Gaia18aen.

Conclusions Why to bother?

Thank you for your attention.

Acknowledgements:

This work was supported by the Charles University, project GA UK No. 890120 and by the internal grant VVGS-PF-2019-1047 of the Faculty of Science, P. J. Šafárik University in Košice.

Why?

- basic research expanding our knowledge
- unique astrophysical laboratories
 - accretion processes, winds or jets
- important for **evolutionary models**
 - binary evolution
 - possible progenitors of supernovae la

How?

- studies of individual systems
 - long-term monitoring
 - understanding of the processes
 - parameters of the components
- systematic studies
 - population of symbiotic stars