V392 Per - A dwarf nova turned regular nova

L’ubomír Hambálek with: D. Chochol, S. Shugarov, A. Skopal, Š. Parimucha, P. Dubovský, and V. Šimon

Bezovec online, Oct 2, 2020

Outline

The object
The data
Photometry analysis
Spectroscopy analysis
Other sources
Periodicity
Summary

What's the difference

Classical Novae (CN):
White dwarf (WD) + red giant

$$
P_{\text {orb }} \sim 3 \mathrm{~h}-2 \mathrm{~d}
$$

Solar luminosities
RL overflow, TN runaway
Brightness rises $16-19 \mathrm{mag}$
Energy release $\sim 10^{37} \mathrm{~J}$
Outburst \sim few $10^{4} \mathrm{~L}_{\odot}$
$v_{\mathrm{ej}} \sim$ few $10^{2}-10^{3} \mathrm{~km} \mathrm{~s}^{-1}$
recurrence in $30-100 \mathrm{kyr}$

Dwarf novae (DN):

WD + late type MS/subgiant

$$
P_{\text {orb }} \sim 1 \mathrm{~h}-15 \mathrm{~h}
$$

Disk instability, sudden accretion Brightness rises 2-8 mag

Outburst duration up to $\sim 14 \mathrm{~d}$ recurrence in months-years

Classical novae

Discovery

Discovered: April 29, 2018 by Nakamura

Discovery

Discovered: April 29, 2018 by Nakamura

Discovery

The real change

Before (map)

Discovery

The real change

Before (map)

After (May 5, 2018)

Individual data sources

Photometry:

- UBVR ${ }_{C} I_{C}$ photometry on 0.6 m and 0.18 m © Stará Lesná
- $B V R_{C} l_{C}$ on $1.0 \mathrm{~m}, 0.35 \mathrm{~m}$, and 0.5 m @ Kolonica
- $B V R_{C} I_{C}$ on 1.25 m and 0.5 m @ Crimea
- added AAVSO, VSNET, ATel individual data

Spectroscopy:

- $R \sim 38000$ on 1.3 m @ Skalnaté Pleso
- $R \sim 11500$ on 0.6 m @ Stará Lesná
- added $R \sim 500-5000$ ARAS spectra

Rate of decline

$$
\begin{array}{ll}
V_{\max }=6.24 \mathrm{mag} & B_{\max }=7.12 \mathrm{mag} \\
V_{15}=10.30 \mathrm{mag} & B_{15}=10.84 \mathrm{mag} \\
t_{2, V}=3 \mathrm{~d} & t_{2, B}=3 \mathrm{~d} \\
t_{3, V}=10 \mathrm{~d} & t_{3, B}=10.5 \mathrm{~d}
\end{array}
$$

Absolute brightness

1. Maximum Magnitude Rate of Decline (Selvelli \& Gilmozzi, 2019) $M V_{\text {max }}=(2.12 \pm 0.20) \log t_{3, V}-11.08 \pm 0.33$ $M V_{\text {max }, 1}=-8.96 \pm 0.53$

Absolute brightness

1. Maximum Magnitude Rate of Decline (Selvelli \& Gilmozzi, 2019) $M V_{\text {max }}=(2.12 \pm 0.20) \log t_{3, V}-11.08 \pm 0.33$ $M V_{\text {max }, 1}=-8.96 \pm 0.53$
2. all novae have the same absolute magnitude 15 days after maximum (ibidem)

Absolute brightness

17 galactic novae

Absolute brightness

1. Maximum Magnitude Rate of Decline (Selvelli \& Gilmozzi, 2019)

$$
M V_{\max }=(2.12 \pm 0.20) \log t_{3, V}-11.08 \pm 0.33
$$

$$
M V_{\max , 1}=-8.96 \pm 0.53
$$

2. all novae have the same absolute magnitude 15 days after maximum (ibidem): $M V_{15}=-5.58 \pm 0.41$
$V_{15}=10.30, \Delta V=4.06$
$M V_{\max , 2}=-9.64 \pm 0.41$

$$
\rightarrow M V_{\max }=-9.30 \pm 0.57
$$

Color excess

1. observed $(B-V)_{\text {max }}=0.88$ vs. intrinsic

$$
\begin{gathered}
(B-V)_{0}=0.23 \pm 0.06(\text { van den Bergh \& Younger, 1987) } \\
\mathbf{E}(\mathbf{B}-\mathbf{V})=\mathbf{0 . 6 5} \pm \mathbf{0 . 0 6}
\end{gathered}
$$

Color excess

1. observed $(B-V)_{\text {max }}=0.88$ vs. intrinsic $(B-V)_{0}=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987) $E(B-V)=0.65 \pm 0.06$
2. observed $(B-V) @ t_{2, V}=0.83$ vs. intrinsic
$(B-V)_{0}=-0.02 \pm 0.04$ (ibidem)

$$
E(B-V)=0.85 \pm 0.04
$$

Color excess

1. observed $(B-V)_{\text {max }}=0.88$ vs. intrinsic $(B-V)_{0}=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987)

$$
E(B-V)=0.65 \pm 0.06
$$

2. observed $(B-V) @ t_{2, V}=0.83$ vs. intrinsic
$(B-V)_{0}=-0.02 \pm 0.04$ (ibidem)

$$
E(B-V)=0.85 \pm 0.04
$$

3. from 3D dustmap (Green et al., 2019)

Color excess

Thick interstellar clouds (http://argonaut.skymaps.info/)

Cumulative Reddening

300 pc

1000 pe

5000 pc

Color excess

Galactic coordinates of V392 Per: $I=157.99184^{\circ}, b=0.90224^{\circ}$
Galactic longitude

Color excess

1. observed $(B-V)_{\text {max }}=0.88$ vs. intrinsic $(B-V)_{0}=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987)

$$
E(B-V)=0.65 \pm 0.06
$$

2. observed $(B-V) @ t_{2, V}=0.83$ vs. intrinsic $(B-V)_{0}=-0.02 \pm 0.04$ (ibidem)

$$
E(B-V)=0.85 \pm 0.04
$$

3. from 3D dustmap (Green et al., 2019)

$$
E(B-V)=0.90 \pm 0.10
$$

Color excess

1. observed $(B-V)_{\text {max }}=0.88$ vs. intrinsic $(B-V)_{0}=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987)

$$
E(B-V)=0.65 \pm 0.06
$$

2. observed $(B-V) @ t_{2, V}=0.83$ vs. intrinsic $(B-V)_{0}=-0.02 \pm 0.04$ (ibidem)

$$
E(B-V)=0.85 \pm 0.04
$$

3. from 3D dustmap (Green et al., 2019)

$$
E(B-V)=0.90 \pm 0.10
$$

4. EW of DIBs 5780Å, 5797Å, 6614Å and KI line (Tomov et al., 2018)

$$
E(B-V)=1.18 \pm 0.10
$$

Distance

Adopted mean value:

$$
\begin{aligned}
& E(B-V)=0.90 \pm 0.13 \\
& A_{V}=2.79 \pm 0.28 \\
& V_{\max }-M V_{\max }=15.54 \pm 0.20
\end{aligned}
$$

Corresponding absorption:

Distance to the nova: $d=3.55 \pm 0.60 \mathrm{kpc}$

Distance

Adopted mean value:

$$
\text { Corresponding absorption: } \quad A_{V}=2.79 \pm 0.28
$$

$$
\begin{aligned}
& E(B-V)=0.90 \pm 0.13 \\
& A_{V}=2.79 \pm 0.28 \\
& V_{\max }-M V_{\max }=15.54 \pm 0.20
\end{aligned}
$$

Distance modulus:
Distance to the nova: $d=3.55 \pm 0.60 \mathrm{kpc}$

Note:
Direct distance from Gaia DR2 parallax: $3.886_{-0.649}^{+0.975} \mathrm{kpc}$ Schaefer (2018): $4.161_{-0.440}^{+2.345} \mathrm{kpc}$ Bailer-Jones et al. (2018): $3.416_{-0.533}^{+0.750} \mathrm{kpc}$

Distance

Schaefer (2018):

The many variations on the 'maximum-magnitude-rate-ofdecline' (MMRD) relation are all found to be poor, too poor to be usable, and even to be non-applicable for 5-out-of-7 samples of nova, so the MMRD should no longer be used.

Distance

Schaefer (2018):
The many variations on the 'maximum-magnitude-rate-ofdecline' (MMRD) relation are all found to be poor, too poor to be usable, and even to be non-applicable for 5-out-of-7 samples of nova, so the MMRD should no longer be used.

Schaefer (2018):

$$
\begin{array}{ll}
\hline V_{\max }=5.6, t_{2}=2 \mathrm{~d}, t_{3}=4 \mathrm{~d} & V_{\max }=6.24, t_{2}=3 \mathrm{~d}, t_{3}=10 \mathrm{~d} \\
A_{V}=1.6, E(B-V)=0.52 & A_{V}=2.79, E(B-V)=0.90 \\
d=3.981 \mathrm{kpc} & d=3.548 \pm 600 \mathrm{kpc} \\
d_{G A I A}=4.161_{-0.440}^{+2.345} \mathrm{kpc} & d_{G A I A}=3.416_{-0.533}^{+0.750} \mathrm{kpc}
\end{array}
$$

Atmospheric model

SED similar to recurrent nova U Sco \& classical nova GK Per

$$
\begin{array}{ll}
R_{a t m}=356 \mathrm{R}_{\odot} & R_{\mathrm{atm}}=354 \mathrm{R}_{\odot} \\
M_{V, a t m}=-8.70 \mathrm{mag} & M_{V, a t m}=-8.99 \mathrm{mag} \\
R_{b b}=258 \mathrm{R}_{\odot} & R_{b b}=234 \mathrm{R}_{\odot} \\
M_{V, b b}=-9.10 \mathrm{mag} & M_{V, b b}=-9.54 \mathrm{mag}
\end{array}
$$

Atmospheric model

SED similar to recurrent nova U Sco \& classical nova GK Per

$$
\begin{array}{ll}
R_{a t m}=356 \mathrm{R}_{\odot} & R_{a t m}=354 \mathrm{R}_{\odot} \\
M_{V, a t m}=-8.70 \mathrm{mag} & M_{V, a t m}=-8.99 \mathrm{mag} \\
R_{b b}=258 \mathrm{R}_{\odot} & R_{b b}=234 \mathrm{R}_{\odot} \\
M_{V, b b}=-9.10 \mathrm{mag} & M_{V, b b}=-9.54 \mathrm{mag}
\end{array}
$$

Atmospheric model

Best fit consistent with E_{B-V}, SED \& derived M_{V} :

```
\(R_{\text {source }}=258 \mathrm{R}_{\odot}\)
\(L_{\text {source }}=1.51 \times 10^{39} \mathrm{erg} / \mathrm{s}\left(\sim 40000 \mathrm{~L}_{\odot}!\right)\)
```


Atmospheric model

Best fit consistent with E_{B-V}, SED \& derived M_{V} :
$R_{\text {source }}=258 \mathrm{R}_{\odot}$
$L_{\text {source }}=1.51 \times 10^{39} \mathrm{erg} / \mathrm{s}\left(\sim 40000 \mathrm{~L}_{\odot}!\right)$

For comparison Sun as red giant:
$R \sim 256 \mathrm{R}_{\odot}$
$L \sim 4800 \mathrm{~L}_{\odot}$

Mass of the white dwarf

1. from t_{3} (Selvelli \& Gilmozzi, 2019) $M_{W D}=1.488-0.388 \log t_{3}$ $M_{\text {WD }}=1.10 M_{\odot}$

Mass of the white dwarf

1. from t_{3} (Selvelli \& Gilmozzi, 2019) $M_{W D}=1.488-0.388 \log t_{3}$ $\mathrm{M}_{\text {WD }}=1.10 \mathrm{M}_{\odot}$
2. from $M B_{\max }$ (Livio, 1992) $M B_{\max }=-8.3-10.0 \log \left(M_{W D} / \mathrm{M}_{\odot}\right)$ Using $M B_{\max }-M V_{\max }=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987) we get $M B_{\max }=-9.07 \pm 0.26$

$$
\mathrm{M}_{\mathrm{WD}}=1.19 \pm 0.07 \mathrm{M}_{\odot}
$$

Mass of the white dwarf

1. from t_{3} (Selvelli \& Gilmozzi, 2019) $M_{W D}=1.488-0.388 \log t_{3}$ $\mathrm{M}_{\text {WD }}=1.10 \mathrm{M}_{\odot}$
2. from $M B_{\max }$ (Livio, 1992) $M B_{\max }=-8.3-10.0 \log \left(M_{W D} / M_{\odot}\right)$ Using $M B_{\max }-M V_{\max }=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987) we get $M B_{\max }=-9.07 \pm 0.26$

$$
\mathrm{M}_{\mathrm{WD}}=1.19 \pm 0.07 \mathrm{M}_{\odot}
$$

Mass of the white dwarf

1. from t_{3} (Selvelli \& Gilmozzi, 2019) $M_{W D}=1.488-0.388 \log t_{3}$ $\mathrm{M}_{\text {WD }}=1.10 \mathrm{M}_{\odot}$
2. from $M B_{\max }$ (Livio, 1992) $M B_{\max }=-8.3-10.0 \log \left(M_{W D} / M_{\odot}\right)$ Using $M B_{\max }-M V_{\max }=0.23 \pm 0.06$ (van den Bergh \& Younger, 1987) we get $M B_{\max }=-9.07 \pm 0.26$

$$
\mathrm{M}_{\mathrm{WD}}=1.19 \pm 0.07 \mathrm{M}_{\odot}
$$

Line identification

First spectra: April, 29.894 (R. Leadbeater) $\rightarrow \mathrm{CN}$ with iron curtain

Line identification

First spectra: April, 29.894 (R. Leadbeater) \rightarrow CN with iron curtain, however after 6 days...

Nova Per 2018-2018/05/05 (Skalnaté Pleso)

Nova evolution

Disentangling of $\mathrm{H} \alpha$ profile

Disentangling of $\mathrm{H} \alpha$ profile

H α 2018/04/29 (+0.068 d)

Disentangling of $\mathrm{H} \alpha$ profile

Disentangling of $\mathrm{H} \alpha$ profile

approaching outer polar outflow approaching spherical outer envelope
receding outer polar outflow ellipsoidal outer nebula

Disentangling of $\mathrm{H} \alpha$ profile

New:
approaching inner polar outflow receding inner polar outflow

Disentangling of $\mathrm{H} \alpha$ profile

Disentangling of $\mathrm{H} \alpha$ profile

New:

Late $\mathrm{H} \alpha$ profile

Ha 2018/05/08 (+9.084d)

New:
approaching outer polar wind

Late $\mathrm{H} \alpha$ profile

Ha 2018/06/06 (+38.152 d)

New:

ellipsoidal outer nebula

Late $\mathrm{H} \alpha$ profile

Why is the central peak important?

Late $\mathrm{H} \alpha$ profile

Why is the central peak important?

Actually made of two components:

3D model

Shape - morpho-kinematic 3D modeling of spatially resolved astrophysical nebulae (Steffen et al., 2011)

3D model

Shape - morpho-kinematic 3D modeling of spatially resolved astrophysical nebulae (Steffen et al., 2011)

- geometrical 3D structures
- physical parameters of structures (density, velocity...)
- Doppler projection to the observation plane
- spectral profile synthesis
- object 3D rendering

3D model

Inclination and the spectral profile

Intensity
(front view)

Radio observation

Linford et al., 2019:

Radio observation

Linford et al., 2019:

Figure 4: Preliminary VLA and AMI-LA light curve of V392 Per. The green crosses (15.5 GHz) are from AMI-LA. All other data were obtained with the VLA. The gray region indicates the time when the nova was detected by the Fermi Gamma-ray Space Telescope. The vertical dashed lines indicate observations with the VLBA or EVN.

Re-brightening ($@ 15.5 \mathrm{GHz}$) - shock $\sim 46 \mathrm{~d}$ after maximum

Visual vs. radio

Decline variability

Periodogram

Phase and color

Discrete temperature spots?

Phase and color

Discrete temperature spots? NO.

Historical (super)outbursts

Historical (super)outbursts

Superhumps?

- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{S H}$ few $\%$ greater or lesser than $P_{\text {orb }} ; 1 / P_{S H}=1 / P_{\text {orb }}+1 / P_{\text {beat }}$

Superhumps?

- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{S H}$ few $\%$ greater or lesser than $P_{\text {orb }} ; 1 / P_{S H}=1 / P_{\text {orb }}+1 / P_{\text {beat }}$
- BUT! SH usually present in short period systems. The longest $P_{S H}=6.3 \mathrm{hr}$ in TV Col (Retter et al., 2003)

Superhumps?

- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{S H}$ few $\%$ greater or lesser than $P_{\text {orb }} ; 1 / P_{S H}=1 / P_{\text {orb }}+1 / P_{\text {beat }}$
- BUT! SH usually present in short period systems. The longest $P_{S H}=6.3 \mathrm{hr}$ in TV Col (Retter et al., 2003)
- Other issue: nearly pole-on system

Decline vs. orbital period

Decline rate in day for 1 magnitude (see Bailey, 1975): $\tau_{\mathrm{D}}=9.2 P_{\text {orb }}$

Summary

- Fast super-Eddington nova of He / N spectrum

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope
- Acceleration of the bipolar flow 5-10d after maximum

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope
- Acceleration of the bipolar flow 5-10d after maximum
- Constructed 3D model consistent with all observables

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope
- Acceleration of the bipolar flow 5-10d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found $i \sim 9^{\circ}$

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope
- Acceleration of the bipolar flow 5-10d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found $i \sim 9^{\circ}$
- Asymmetric outflow (density difference? $\sim 1.5 \times$)

Summary

- Fast super-Eddington nova of He / N spectrum
- Found distance $d=3.55 \pm 0.60 \mathrm{kpc}$
- Calculated the mass $M_{W D}=1.19 \pm 0.07 \mathrm{M}_{\odot}$
- Evolution of individual parts of the envelope
- Acceleration of the bipolar flow 5-10d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found $i \sim 9^{\circ}$
- Asymmetric outflow (density difference? $\sim 1.5 \times$)
- Found period of supposed orbital motion $P=3.202 \mathrm{~d}$

Thank you for listening!

