# V392 Per – A dwarf nova turned regular nova



### <u>Ľubomír Hambálek</u>

with: D. Chochol, S. Shugarov, A. Skopal, Š. Parimucha, P. Dubovský, and V. Šimon

Bezovec online, Oct 2, 2020

### Outline

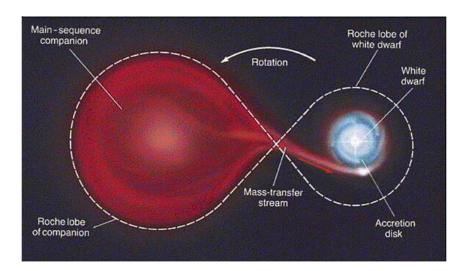
The object

The data

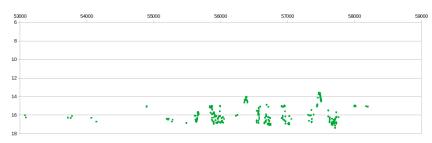
Photometry analysis

Spectroscopy analysis

Other sources

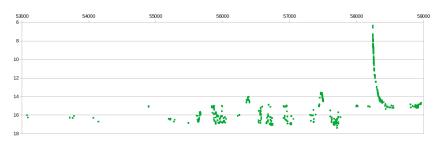

Periodicity

Summary


## What's the difference

| Classical Novae (CN):                        | Dwarf novae (DN):                     |
|----------------------------------------------|---------------------------------------|
| White dwarf $(WD)$ + red giant               | WD + late type MS/subgiant            |
| $P_{ m orb}\sim 3{ m h}{-}2{ m d}$           | $P_{ m orb}\sim 1{\sf h}{-}15{\sf h}$ |
| Solar luminosities                           |                                       |
| RL overflow, TN runaway                      | Disk instability, sudden accretion    |
| Brightness rises $16-19\mathrm{mag}$         | Brightness rises $2-8\mathrm{mag}$    |
| Energy release $\sim 10^{37}\mathrm{J}$      |                                       |
| Outburst $\sim$ few $10^4{\rm L}_\odot$      |                                       |
|                                              | Outburst duration up to $\sim$ 14 d   |
| $v_{ m ej}\sim$ few $10^2-10^3{ m kms^{-1}}$ |                                       |
| recurrence in 30 - 100 kyr                   | recurrence in months—years            |

# Classical novae




### Discovered: April 29, 2018 by Nakamura



AAVSO V mag observations of dwarf nova V392 Per

### Discovered: April 29, 2018 by Nakamura



AAVSO V mag observations of dwarf nova V392 Per

### The real change

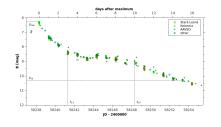


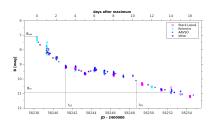
Before (map)

### The real change



#### Individual data sources


#### Photometry:

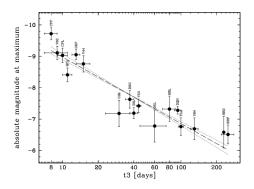

- UBVR<sub>C</sub>I<sub>C</sub> photometry on 0.6m and 0.18m @ Stará Lesná
- BVR<sub>C</sub>I<sub>C</sub> on 1.0m, 0.35m, and 0.5m @ Kolonica
- BVR<sub>C</sub>I<sub>C</sub> on 1.25m and 0.5m @ Crimea
- added AAVSO, VSNET, ATel individual data

#### Spectroscopy:

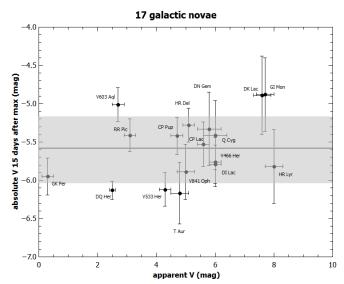
- $R\sim38000$  on 1.3m @ Skalnaté Pleso
- $R\sim 11500$  on 0.6m @ Stará Lesná
- added  $R \sim 500 5000$  ARAS spectra

### Rate of decline






$$V_{max} = 6.24 \, {
m mag}$$
  $B_{max} = 7.12 \, {
m mag}$   $V_{15} = 10.30 \, {
m mag}$   $B_{15} = 10.84 \, {
m mag}$   $t_{2,V} = 3 \, {
m d}$   $t_{2,B} = 3 \, {
m d}$ 


$$t_{3,V}=10\,\mathrm{d}$$

$$egin{aligned} B_{ extit{max}} &= 7.12 \, ext{mag} \ B_{15} &= 10.84 \, ext{mag} \ t_{2,B} &= 3 \, ext{d} \ t_{3,B} &= 10.5 \, ext{d} \end{aligned}$$

1. Maximum Magnitude Rate of Decline (Selvelli & Gilmozzi, 2019)  $MV_{max}=(2.12\pm0.20)\log t_{3,V}-11.08\pm0.33$   $MV_{max,1}=-8.96\pm0.53$ 



- 1. Maximum Magnitude Rate of Decline (Selvelli & Gilmozzi, 2019)  $MV_{max} = (2.12 \pm 0.20) \log t_{3,V} 11.08 \pm 0.33$   $MV_{max.1} = -8.96 \pm 0.53$
- 2. all novae have the same absolute magnitude 15 days after maximum (ibidem)



- 1. Maximum Magnitude Rate of Decline (Selvelli & Gilmozzi, 2019)  $MV_{max} = (2.12 \pm 0.20) \log t_{3,V} 11.08 \pm 0.33$   $MV_{max.1} = -8.96 \pm 0.53$
- 2. all novae have the same absolute magnitude 15 days after maximum (ibidem):  $MV_{15}=-5.58\pm0.41$   $V_{15}=10.30,~\Delta V=4.06$   $MV_{max~2}=-9.64\pm0.41$

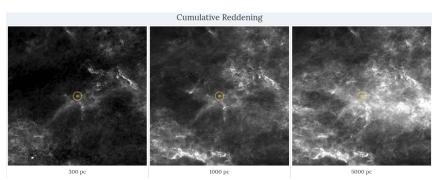
$$\rightarrow MV_{max} = -9.30 \pm 0.57$$

1. observed  $(B-V)_{max}=0.88$  vs. intrinsic  $(B-V)_0=0.23\pm0.06$  (van den Bergh & Younger, 1987)  ${\bf E}({\bf B}-{\bf V})={\bf 0.65}\pm{\bf 0.06}$ 

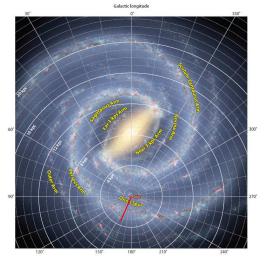
1. observed  $(B-V)_{max}=0.88$  vs. intrinsic  $(B-V)_0=0.23\pm0.06$  (van den Bergh & Younger, 1987)  ${\bf E}({\bf B}-{\bf V})={\bf 0.65}\pm{\bf 0.06}$ 

2. observed 
$$(B-V)@t_{2,V}=0.83$$
 vs. intrinsic  $(B-V)_0=-0.02\pm0.04$  (ibidem) 
$${\bf E}({\bf B}-{\bf V})={\bf 0.85}\pm{\bf 0.04}$$

1. observed  $(B - V)_{max} = 0.88$  vs. intrinsic  $(B - V)_0 = 0.23 \pm 0.06$  (van den Bergh & Younger, 1987)


$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.65 \pm 0.06$$

2. observed  $(B - V)@t_{2,V} = 0.83$  vs. intrinsic  $(B - V)_0 = -0.02 \pm 0.04$  (ibidem)


$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.85 \pm 0.04$$

3. from 3D dustmap (Green et al., 2019)

## Thick interstellar clouds (http://argonaut.skymaps.info/)



Galactic coordinates of V392 Per:  $I=157.99184^{\circ},\ b=0.90224^{\circ}$ 



1. observed  $(B - V)_{max} = 0.88$  vs. intrinsic  $(B - V)_0 = 0.23 \pm 0.06$  (van den Bergh & Younger, 1987)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.65 \pm 0.06$$

2. observed  $(B-V)@t_{2,V}=0.83$  vs. intrinsic  $(B-V)_0=-0.02\pm0.04$  (ibidem)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.85 \pm 0.04$$

3. from 3D dustmap (Green et al., 2019)

$$\text{E(B-V)} = 0.90 \pm 0.10$$

1. observed  $(B-V)_{max}=0.88$  vs. intrinsic  $(B-V)_0=0.23\pm0.06$  (van den Bergh & Younger, 1987)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.65 \pm 0.06$$

2. observed  $(B - V)@t_{2,V} = 0.83$  vs. intrinsic  $(B - V)_0 = -0.02 \pm 0.04$  (ibidem)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.85 \pm 0.04$$

3. from 3D dustmap (Green et al., 2019)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 0.90 \pm 0.10$$

4. EW of DIBs 5780Å, 5797Å, 6614Å and KI line (Tomov et al., 2018)

$$\mathsf{E}(\mathsf{B}-\mathsf{V}) = 1.18 \pm 0.10$$

Adopted mean value:  $E(B-V) = 0.90 \pm 0.13$ 

Corresponding absorption:  $A_V = 2.79 \pm 0.28$ 

Distance modulus:  $V_{max} - MV_{max} = 15.54 \pm 0.20$ 

Distance to the nova:  $d = 3.55 \pm 0.60 \,\mathrm{kpc}$ 

Adopted mean value:  $E(B-V) = 0.90 \pm 0.13$ 

Corresponding absorption:  $A_V = 2.79 \pm 0.28$ 

Distance modulus:  $V_{max} - MV_{max} = 15.54 \pm 0.20$ 

Distance to the nova:  $d = 3.55 \pm 0.60 \,\mathrm{kpc}$ 

Note:

Direct distance from Gaia DR2 parallax: 3.886<sup>+0.975</sup><sub>-0.649</sub> kpc

Schaefer (2018):  $4.161^{+2.345}_{-0.440}$  kpc

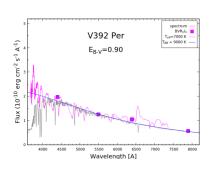
Bailer-Jones et al. (2018):  $3.416^{+0.750}_{-0.533}$  kpc

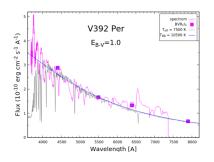
### Schaefer (2018):

The many variations on the 'maximum-magnitude-rate-of-decline' (MMRD) relation are all found to be poor, too poor to be usable, and even to be non-applicable for 5-out-of-7 samples of nova, so the MMRD should no longer be used.

### Schaefer (2018):

The many variations on the 'maximum-magnitude-rate-of-decline' (MMRD) relation are all found to be poor, too poor to be usable, and even to be non-applicable for 5-out-of-7 samples of nova, so the MMRD should no longer be used.

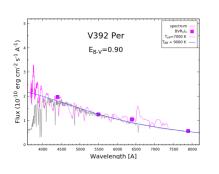

### Schaefer (2018):

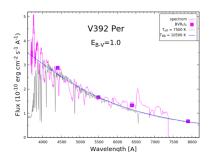

# $V_{\text{max}} = 5.6$ , $t_2 = 2 \text{ d}$ , $t_3 = 4 \text{ d}$ $A_V = 1.6$ , E(B - V) = 0.52 d = 3.981 kpc $d_{GAIA} = 4.161^{+2.345}_{-0.440} \text{ kpc}$

#### This work:

$$V_{max} = 6.24$$
,  $t_2 = 3$  d,  $t_3 = 10$  d  
 $A_V = 2.79$ ,  $E(B - V) = 0.90$   
 $d = 3.548 \pm 600$  kpc  
 $d_{GAIA} = 3.416^{+0.750}_{-0.533}$  kpc

#### SED similar to recurrent nova U Sco & classical nova GK Per




$$R_{atm}=356\,\mathrm{R}_{\odot}$$
  $M_{V,atm}=-8.70\,\mathrm{mag}$   $R_{bb}=258\,\mathrm{R}_{\odot}$   $M_{V,bb}=-9.10\,\mathrm{mag}$ 

$$R_{atm}=354~
m R_{\odot}$$
 g  $M_{V,atm}=-8.99~
m mag$   $R_{bb}=234~
m R_{\odot}$   $M_{V,bb}=-9.54~
m mag$ 

#### SED similar to recurrent nova U Sco & classical nova GK Per





$$\begin{array}{ll} R_{atm} = 356 \ {\rm R}_{\odot} & R_{atm} = 354 \ {\rm R}_{\odot} \\ M_{V,atm} = -8.70 \ {\rm mag} & M_{V,atm} = -8.99 \ {\rm mag} \\ R_{bb} = 258 \ {\rm R}_{\odot} & R_{bb} = 234 \ {\rm R}_{\odot} \\ M_{V,bb} = -9.10 \ {\rm mag} & M_{V,bb} = -9.54 \ {\rm mag} \end{array}$$

$$R_{atm}=354\,
m R_{\odot}$$
 g  $M_{V,atm}=-8.99\,
m mag$   $R_{bb}=234\,
m R_{\odot}$   $M_{V,bb}=-9.54\,
m mag$ 

Best fit consistent with  $E_{B-V}$ , SED & derived  $M_V$ :


$$\begin{split} R_{source} &= 258 \ R_{\odot} \\ L_{source} &= 1.51 \times 10^{39} \ \text{erg/s} \ (\sim 40 \ 000 \ L_{\odot}!) \end{split}$$

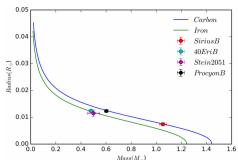
Best fit consistent with  $E_{B-V}$ , SED & derived  $M_V$ :

$$\begin{split} R_{source} &= 258~\textrm{R}_{\odot} \\ L_{source} &= 1.51\times10^{39}~\textrm{erg/s}~(\sim40~000~\textrm{L}_{\odot}!) \end{split}$$

For comparison Sun as red giant:

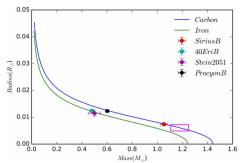
$$R \sim 256 \,\mathrm{R}_\odot$$
  
 $L \sim 4\,800 \,\mathrm{L}_\odot$ 




1. from  $t_3$  (Selvelli & Gilmozzi, 2019)  $M_{WD}=1.488-0.388\log t_3$   $\mathbf{M_{WD}}=\mathbf{1.10}~\mathrm{M_{\odot}}$ 

- 1. from  $t_3$  (Selvelli & Gilmozzi, 2019)  $M_{WD}=1.488-0.388\log t_3$   $\mathbf{M_{WD}}=\mathbf{1.10}~\mathrm{M_{\odot}}$
- 2. from  $MB_{max}$  (Livio, 1992)  $MB_{max} = -8.3 10.0 \log (M_{WD}/{\rm M}_{\odot})$  Using  $MB_{max} MV_{max} = 0.23 \pm 0.06$  (van den Bergh & Younger, 1987) we get  $MB_{max} = -9.07 \pm 0.26$

 $M_{WD}=1.19\pm0.07\,\text{M}_\odot$ 

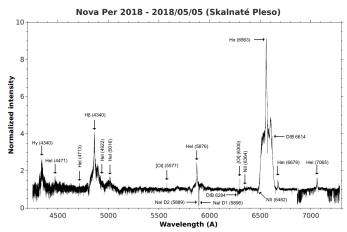

- 1. from  $t_3$  (Selvelli & Gilmozzi, 2019)  $M_{WD}=1.488-0.388\log t_3$   $\mathbf{M_{WD}}=\mathbf{1.10}\,\mathrm{M_{\odot}}$
- 2. from  $MB_{max}$  (Livio, 1992)  $MB_{max} = -8.3 10.0 \log (M_{WD}/{\rm M}_{\odot})$  Using  $MB_{max} MV_{max} = 0.23 \pm 0.06$  (van den Bergh & Younger, 1987) we get  $MB_{max} = -9.07 \pm 0.26$

 $M_{WD}=1.19\pm0.07\,\text{M}_{\odot}$ 

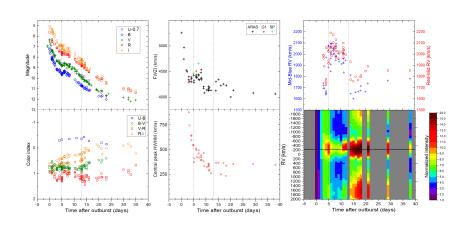


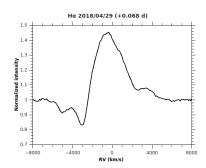
- 1. from  $t_3$  (Selvelli & Gilmozzi, 2019)  $M_{WD} = 1.488 0.388 \log t_3$   $M_{WD} = 1.10 \, \rm M_{\odot}$
- 2. from  $MB_{max}$  (Livio, 1992)  $MB_{max} = -8.3 10.0 \log (M_{WD}/{\rm M}_{\odot})$  Using  $MB_{max} MV_{max} = 0.23 \pm 0.06$  (van den Bergh & Younger, 1987) we get  $MB_{max} = -9.07 \pm 0.26$

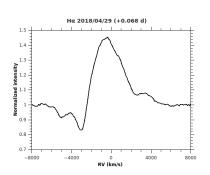
 $M_{WD}=1.19\pm0.07\, \text{M}_{\odot}$ 

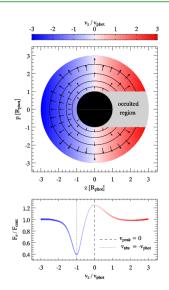


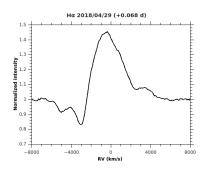

### Line identification

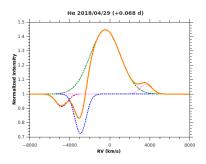

First spectra: April, 29.894 (R. Leadbeater)  $\rightarrow$  CN with iron curtain

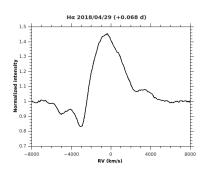

#### Line identification

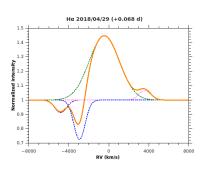

First spectra: April, 29.894 (R. Leadbeater)  $\rightarrow$  CN with iron curtain, however after 6 days...





### Nova evolution

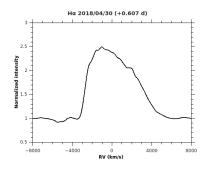


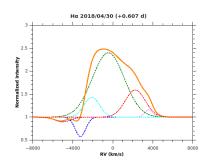





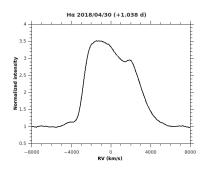


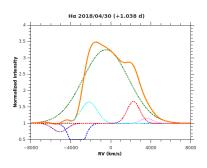



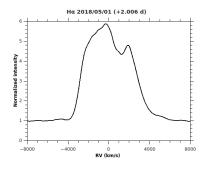



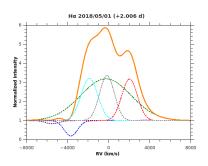



approaching outer polar outflow approaching spherical outer envelope total profile


eceding outer polar outflow ellipsoidal outer nebula

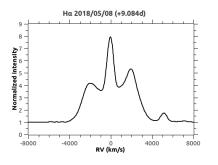


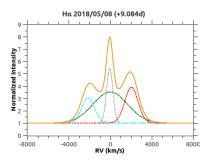





New:

approaching inner polar outflow receding inner polar outflow



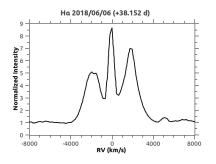


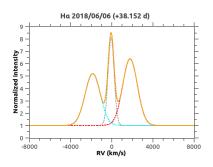






New:

equatorial inner ring



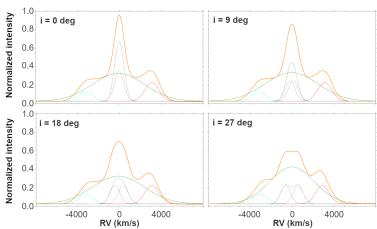




New:

approaching outer polar wind

receding outer polar wind






New:

ellipsoidal outer nebula

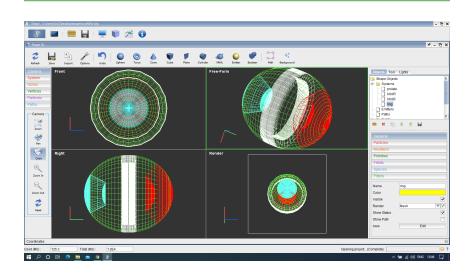
Why is the central peak important?

Why is the central peak important? Actually made of two components:

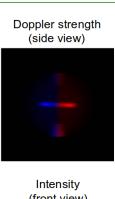


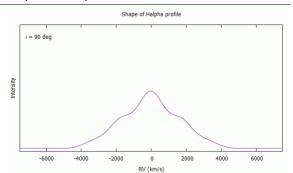
#### 3D model

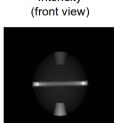
Shape - morpho-kinematic 3D modeling of spatially resolved astrophysical nebulae (Steffen et al., 2011)

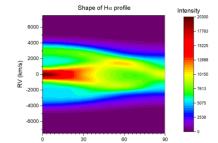

#### 3D model

Shape - morpho-kinematic 3D modeling of spatially resolved astrophysical nebulae (Steffen et al., 2011)


- geometrical 3D structures
- physical parameters of structures (density, velocity...)
- Doppler projection to the observation plane
- spectral profile synthesis
- object 3D rendering

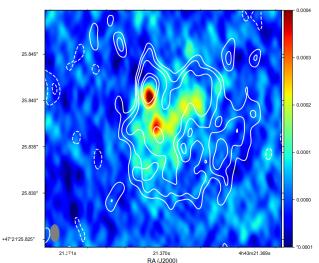




### 3D model




### Inclination and the spectral profile










#### Radio observation

#### Linford et al., 2019:



#### Radio observation

#### Linford et al., 2019:

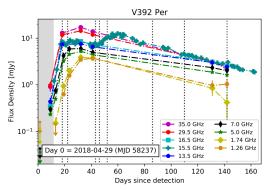
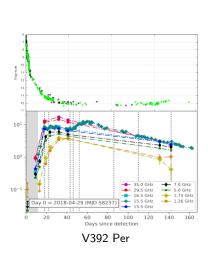
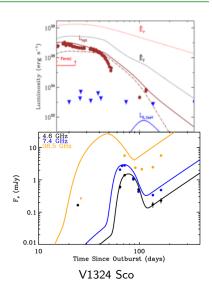
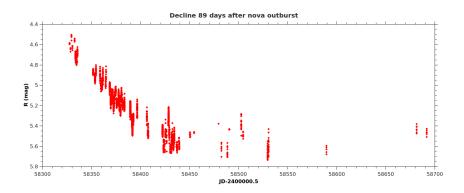
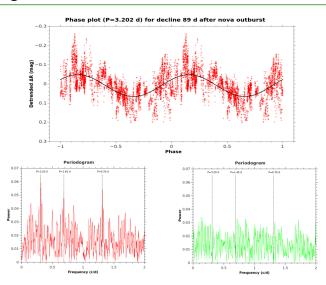





Figure 4: Preliminary VLA and AMI-IA light curve of V392 Per. The green crosses (15.5 GHz) are from AMI-IA. All other data were obtained with the VLA. The gray region indicates the time when the nova was detected by the Fermi Gamma-ray Space Telescope. The vertical dashed lines indicate observations with the VLBA or EVN.

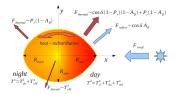

Re-brightening (@15.5 GHz) - shock  $\sim$  46 d after maximum  $_{^{39}\text{ of }^{50}}$ 

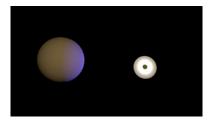
### Visual vs. radio





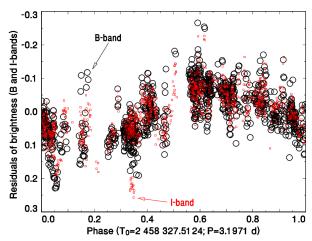

# Decline variability



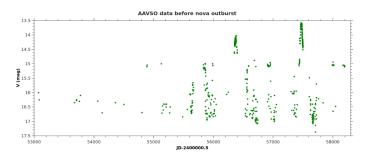


# Periodogram



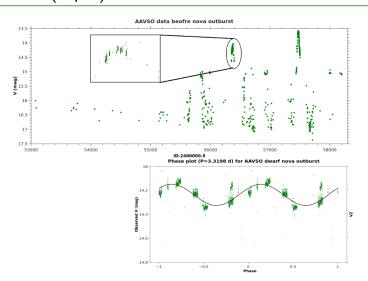
#### Phase and color


#### Discrete temperature spots?






#### Phase and color


Discrete temperature spots? **NO**.



# Historical (super)outbursts



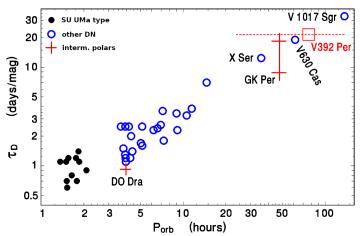
# Historical (super)outbursts



### Superhumps?

- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{SH}$  few % greater or lesser than  $P_{orb}$ ;  $1/P_{SH}=1/P_{orb}+1/P_{beat}$

# Superhumps?


- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{SH}$  few % greater or lesser than  $P_{orb}$ ;  $1/P_{SH}=1/P_{orb}+1/P_{beat}$
- **BUT!** SH usually present in short period systems. The longest  $P_{SH} = 6.3 \, \text{hr}$  in TV Col (Retter et al., 2003)

# Superhumps?

- Periodic brightness variation in dwarf novae (SU UMa) after superoutburst event
- Caused by the (pro/retro-grade) precession of elliptically elongated accretion disk
- $P_{SH}$  few % greater or lesser than  $P_{orb}$ ;  $1/P_{SH}=1/P_{orb}+1/P_{beat}$
- **BUT!** SH usually present in short period systems. The longest  $P_{SH} = 6.3 \, \text{hr}$  in TV Col (Retter et al., 2003)
- Other issue: nearly pole-on system

### Decline vs. orbital period

Decline rate in day for 1 magnitude (see Bailey, 1975):  $au_{
m D} = 9.2 P_{
m orb}$ 



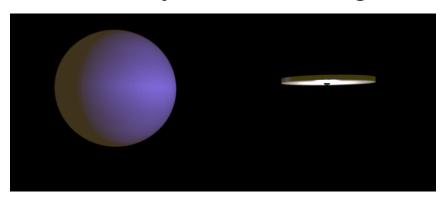
• Fast super-Eddington nova of He/N spectrum

- Fast super-Eddington nova of He/N spectrum
- ullet Found distance  $d=3.55\pm0.60\,\mathrm{kpc}$

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d=3.55\pm0.60\,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d = 3.55 \pm 0.60 \,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d=3.55\pm0.60\,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope
- ullet Acceleration of the bipolar flow  $5-10\,\mathrm{d}$  after maximum


- Fast super-Eddington nova of He/N spectrum
- Found distance  $d=3.55\pm0.60\,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope
- ullet Acceleration of the bipolar flow  $5-10\,\mathrm{d}$  after maximum
- Constructed 3D model consistent with all observables

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d = 3.55 \pm 0.60 \,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope
- ullet Acceleration of the bipolar flow 5 10 d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found  $i\sim 9^\circ$

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d = 3.55 \pm 0.60 \,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope
- ullet Acceleration of the bipolar flow 5 10 d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found  $i\sim 9^\circ$
- Asymmetric outflow (density difference?  $\sim 1.5 \times$ )

- Fast super-Eddington nova of He/N spectrum
- Found distance  $d=3.55\pm0.60\,\mathrm{kpc}$
- ullet Calculated the mass  $M_{WD}=1.19\pm0.07\,\mathrm{M}_\odot$
- Evolution of individual parts of the envelope
- ullet Acceleration of the bipolar flow 5 10 d after maximum
- Constructed 3D model consistent with all observables
- Inclination (radial) found  $i\sim 9^\circ$
- Asymmetric outflow (density difference?  $\sim 1.5 \times$ )
- Found period of supposed orbital motion  $P = 3.202 \,\mathrm{d}$

# Thank you for listening!

