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Abstract. The objects of research are three recently discovered white dwarfs
from binary systems with rapid axial rotation and masses M ≤M�. The geo-
metrical and mechanical characteristics (moment of inertia, equatorial gravity,
the condition of stability in relation to rotation) are calculated for the white
dwarf V1460 Her within an electron-nuclear model, based on the equilibrium
equation and inferred from observations mass and period of axial rotation.
Estimates of model parameters and macroscopic characteristics for inferred
from observations periods of rotation are performed for white dwarfs LAM-
OST J024048.51+195226.9 and CTCV J2056-3014.
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1. Introduction

The traditional approach in the theory of white dwarfs with axial rotation is
based on the Chandrasekhar model (Chandrasekhar, 1931) supplemented by
solid body rotation (James, 1964; Roxburgh, 1965). The structure description
of a white dwarf in this model is reduced to the mechanical equilibrium equa-
tion, which is a differential nonlinear equation of the second order in partial
derivatives with two independent dimensionless parameters (the relativistic pa-
rameter in the stellar center x0 and dimensionless angular velocity Ω). The
solutions of the mechanical equilibrium equation for a fixed value of x0 exist in
the region 0 ≤ Ω ≤ Ωmax(x0) and give the opportunity to qualitatively deter-
mine the influence of rotation on white dwarfs’ characteristics. All macroscopic
characteristics of white dwarfs are functions of these two parameters. Angular
velocity is one of the independent parameters to be used in more accurate mod-
els, which take into account finite temperature effects (incomplete degeneracy of
an electron subsystem), Coulomb interparticle interactions, and magnetic fields
(Tassoul, 1978). This approach does not refer to a specific dwarf, but to dwarfs
in general.

Due to the development of methods of astronomical observations and tech-
nical equipment in recent years it yielded reliable data about white dwarfs in
binary systems, in particular about their axial rotation and also in some cases
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about their masses (Ashley et al., 2020). This gives an opportunity to formulate
a new approach for calculations of the structure and characteristics of white
dwarfs in binary systems. Namely, to solve the equilibrium equation for the
specific white dwarf with inferred from observations angular velocity ω. In this
case the dimensionless angular velocity Ω becomes a function of the relativistic
parameter x0, and the number of independent parameters in the equilibrium
equation is reduced by one. This simplifies the inverse problem of theory – de-
termination for observation data of other parameters of the model, as well as
characteristics of white dwarfs, which are not determined from observed data.

For calculation of white dwarfs’ structure we use the electron-nuclear model
with a completely degenerate electron subsystem, which takes into account ax-
ial rotation and Coulomb interparticle interactions. The purpose of our work
is to calculate geometrical and mechanical characteristics of the white dwarf
V1460 Her (Ashley et al., 2020) for its mass and period of rotation as in-
ferred from observations, as well as assessments of characteristics of LAMOST
J024048.51+195226.9 (Pelisoli et al., 2021) and CTCV J2056-3014 only for in-
ferred from observations periods of axial rotation (Lopes de Oliveira et al., 2020).

2. The equilibrium equation of white dwarf

In the standard approach, the equilibrium equation of a white dwarf with a
constant angular velocity in a non-inertial reference frame is written in the
form (James, 1964)

∇P (r) = −ρ(r)
{
∇Φgrav(r) +∇Φc(r)

}
, (1)

where

ρ(r) =
muµe
3π2

(mec

~

)3
x3(r) (2)

is the density of matter, practically concentrated in nuclei, mu is the atomic
mass unit, me is the electron mass, c is the speed of light,

x(r) ≡ ~
mec

(
3π2ne(r)

)1/3
(3)

is the local value of a relativistic parameter, ne(r) is the number density of
electrons at the point with the radius-vector r, and µe = 〈A/z〉 is the ratio of
mass number of nucleus A to its charge z averaged over the volume of a star,
therefore µe ≈ 2.0. In equation (1)

Φgrav(r) = −G
∫
ρ(r′)dr′

|r− r′|
(4)

is the gravitational potential inside of a white dwarf. In the spherical coordinate
system, whose axis Oz coincides with the axis of star’ rotation, the centrifugal
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potential is

Φc(r) = −1

2
ω2r2 sin2 θ, (5)

where θ is the polar angle, and ω is the angular velocity. In the model which we
use

P (r) = P0(r) + Pint(r), (6)

where

P0(r) =
πm4

ec
5

3h3
F(x(r)),

F(x) = x(2x2 − 3)[1 + x2]1/2 + 3 ln[x+ (1 + x2)1/2]

(7)

is the pressure of an ideal relativistic completely degenerate electron subsystem
within special theory of relativity, and Pint(r) is the contribution of Coulomb
interparticle interactions. The nuclear subsystem is static, as in the Chan-
drasekhar model. The contribution to pressure in a spatially homogeneous
electron-nuclear model is an expansion in powers of the fine-structure constant
α0 = e2/~c, which was calculated in the work of Vavrukh et al. (2018),

Pint = −πm
4
ec

5

3h3
f(x|z),

f(x|z) = α0

{
2

π
+

4d0
3γ

z2/3
}
x4 − 8

3
α2
0

{
dEcor(x)

dx
+ z4/3

dE2(x|z)
dx

}
x4 + . . . ,

(8)

which generalizes the expression obtained by Salpeter (1961). Here
γ = (9π/4)1/3, and x is the relativistic parameter in a homogeneous model. The
parameter d0 depends on the spatial distribution of nuclei: for the Wigner-Seitz
cell (Pines & Noziéres, 1966) d0 = 1.8; for a spatial cubic lattice d0 = 1.76; for a
hexagonal closest packing d0 = 1.79168; and for cubic face-centered and body-
centered configuartions d0 = 1.79186 and 1.79172, respectively (Fuchs, 1935;
Carr, 1961). The function f(x|z) is positive, therefore, Coulomb interparticle
interactions decrease the pressure. Axial rotation and Coulomb interparticle in-
teractions are competing factors. The transition to a spatially inhomogeneous
model is carried out by the substitution x→ x(r) in formulae (8), which corre-
sponds to the local approximation.

3. Model with axial rotation

Axial rotation and Coulomb interparticle interactions play the role of correc-
tions and can be taken into account within the perturbation theory. These two
factors are competing, so it is advisable to study their influence on the white
dwarf characteristics separately. At the first stage we consider a model with ro-
tation without Coulomb interparticle interactions. Substituting P0(r) and ρ(r)
in equation (1) we obtain a nonlinear differential equation for the relativistic
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parameter x(r). To obtain it in the form which is typical for the equation in the
polytropic theory of stars, we introduce the dimensionless variables

ξ = r/λ(x0), Y (ξ, θ) = ε−10

{
[1 + x2(r)]1/2 − 1

}
, (9)

where ε0 ≡ ε0(x0) = (1 + x20)1/2 − 1, and the parameter x0 = x(r = 0) is
determined by the number density of electrons in the stellar center according to
definition (3). In these variables the equilibrium equation takes the form

∆ξ,θY (ξ, θ) = Ω2 −
{
Y 2(ξ, θ) +

2

ε0
Y (ξ, θ)

}3/2

, (10)

where the Laplacian in variables (ξ, θ) equals

∆ξ,θ = ∆ξ +
1

ξ2
∆θ, ∆ξ =

1

ξ2
∂

∂ξ

(
ξ2
∂

∂ξ

)
, ∆θ =

∂

∂t
(1− t2)

∂

∂t
, t = cos θ. (11)

Herewith the scale length λ(x0) and dimensionless angular velocity Ω are deter-
mined by relations

32π2G

3(hc)3
{
muµemec

2λ(x0)ε0
}2

= 1,

Ω = 21/2ωλ(x0)

(
muµe
mec2ε0

)1/2

.

(12)

From first equality (12) we find that λ(x0) = R0(µeε0)−1, where

R0 =

(
3

2

)1/2
1

4π

(
h3

cG

)1/2
1

m0mu
≈ 0.776885·109 cm ≈ 1.11623·10−2R� (13)

is the scale of white dwarfs’ radii. From second expression (12) we have

Ω =
ω

ω0

(
2

µe

)1/2

ε
−3/2
0 , ω0 =

(
GM0

R3
0

)1/2

. (14)

Here

M0 =

(
3

2

)1/2
1

4π

(
hc

G

)3/2
1

m2
u

≈ 5.740247 · 1033 g ≈ 2.886649M� (15)

is the scale of stellar masses and ω0 ≈ 0.9062 c−1 is the scale of angular velocities.
According to definition (9), equation (10) corresponds to the boundary con-

dition Y (0, θ) = 1, and ∂Y (ξ, θ)/∂ξ = 0 at ξ ⇒ 0 is the condition for regularity
of the solution. In equation (10) there appear two dimensionless parameters (x0
and Ω). In our work (Vavrukh et al., 2022) we obtained solutions of equation
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(10) in a linear approximation for Ω2 in the region (1 ≤ x0 ≤ 24; 0 ≤ Ω ≤ Ω(x0))
and calculated polar and equatorial radii. Also we studied the shape of a white
dwarf and calculated its mass, moment of inertia, equatorial gravity and total
energy as functions of parameters x0 and Ω.

But in the case when we know the angular velocity ω from observations,
the dimensionless angular velocity determined by formula (14) is no longer an
independent parameter – it becomes a function of parameters µe and x0, Ω ≡
Ω(x0, µe). At homogeneous chemical composition ω is actually a function of the
parameter x0. Methods of finding solutions of equation (10) at Ω ≡ Ω(x0) are
the same as in the work of Vavrukh et al. (2022).

In the inner stellar region the solution of equation (10) is presented in the
form

YI(ξ, θ) = y(ξ) + Ω2Ψ(ξ, θ), (16)

where y(ξ) is the solution of the equilibrium equation at Ω = 0

∆ξy(ξ) = −
(
y2(ξ) +

2

ε0
y(ξ)

)3/2

(17)

and satisfies the boundary conditions y(0) = 1, ∂y(ξ)/∂ξ = 0 at ξ = 0. The
condition y(ξ) = 0 determines the dimensionless radius of a white dwarf in the
Chandrasekhar model ξ1(x0). In the inner region, where 0 ≤ ξ ≤ ξ1(x0), the
function Ψ(ξ, θ) can be considered as a correction and linearizes equation (10)
relative to Ψ(ξ, θ). In such approximation this function satisfies the equation

∆ξ,θΨ(ξ, θ) = 1− Φ(ξ|x0)Ψ(ξ, θ),

Φ(ξ|x0) = 3

{
y(ξ) +

1

ε0

}{
y2(ξ) +

2

ε0
y(ξ)

}1/2

.
(18)

Its solution can be represented in the form of expansions for the Legendre poly-
nomials

Ψ(ξ, θ) = ψ0(ξ|x0) +
∑
l≥1

a2l(x0)P2l(t)ψ2l(ξ|x0), (19)

where a2l(x0) are integration constants. The unknown functions satisfy the fol-
lowing ordinary linear equations

∆ξψ0(ξ|x0) = 1− Φ(ξ|x0)ψ0(ξ|x0),

∆ξψ2l(ξ|x0) =

{
2(2l + 1)

ξ2
− Φ(ξ|x0)

}
ψ2l(ξ|x0), l ≥ 1.

(20)

Equations (20) correspond to the boundary conditions ψ2l(ξ|x0) = 0,
∂ψ2l(ξ|x0)/∂ξ = 0 at ξ → 0 for all l ≥ 0. The function ψ0(ξ|x0) has asymptotics
ξ2/6+. . . at ξ � 1. Functions ψ2l(ξ|x0) at ξ � 1 have asymptotics of a spherical
Bessel function, so we use a normalization for them

ψ2l(ξ|x0)⇒ {(4l + 1)!!}−1ξ2l + . . . at ξ � 1. (21)
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In the region of stellar periphery (ξ > ξ1(x0)), where Y (ξ, θ) has a small
value, the solution of equation (10) is close to the solution of

∆ξ,θYII(ξ, θ) = Ω2 −
(

2

ε0

)3/2

Y
3/2
II (ξ, θ), (22)

which is similar to the equation of a rotating polytrope with index n = 1.5. By
the method of successive approximations we find that

YII(ξ, θ) =
ξ2Ω2

4
(1− t2)−

(
2

ε0

)3/2
ξ5Ω3

25
(1− t2)5/2 + . . .

+ Ω2
2∑
l=0

{
c2l(x0)ξ2lP2l(t) + b2l(x0)

P2l(t)

ξ2l+1

}
,

(23)

where c2l(x0), b2l(x0) are integration constants.
Solutions of equations (20) are found numerically. To find integration con-

stants a2l(x0) we use the integral form of the equilibrium equation

YI(ξ, θ) = 1+
ξ2Ω2

6

(
1−P2(t)

)
+

1

4π

∫
Q(ξ, ξ′)

{
Y 2
I (ξ′, θ′)+

2

ε0
YI(ξ

′, θ′)

}3/2

dξ′,

(24)
which contains the kernel

Q(ξ, ξ′) = |ξ − ξ′|−1 − (ξ′)−1, (25)

and integration is performed over the entire stellar volume. The surface of a
rotating white dwarf is close to the surface of a rotational ellipsoid. To find inte-
gration constants we use the method of successive approximations. We restrict
ourselves to integrating over the inner part of a rotational ellipsoid ξ ≤ ξ1(x0)
(the unshaded region in Fig. 1, where ξp(x0) is the polar radius, and ξe(x0) is
the equatorial one) to find constants a2l(x0). Substituting expressions (16), (19)
for Y (ξ′, θ′) in equation (24) and linearizing the subintegral function relative to
Ω2, we obtain

y(ξ|x0) + Ω2

{
ψ0(ξ|x0) +

∑
l≥1

a2l(x0)P2l(t)ψ2l(ξ|x0)

}
=

= 1 +
ξ2Ω2

6

(
1− P2(t)

)
+

1

4π

∫
Q(ξ, ξ′)×

×
{[
y2(ξ′|x0) +

2

ε0
y(ξ′|x0)

]3/2
+ Ω2Φ(ξ′|x0)×

×
[
ψ0(ξ′|x0) +

∑
l≥1

a2l(x0)P2l(t
′)ψ2l(ξ

′|x0)

]}
dξ′.

(26)
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Figure 1. A schematic representation of the quarter part of the meridional section of

a white dwarf.

The region of integration is determined by

0 ≤ ξ′ ≤ ξ0(t′) at 1 ≥ |t′| ≥ t(x0); t(x0) = cos θ(x0),

0 ≤ ξ′ ≤ ξ1(x0) at 0 ≤ |t′| ≤ t(x0),
(27)

where the polar angle θ(x0) is determined by the intersection of Chandrasekhar
sphere and the ellipsoid surface ξ0(t′), therefore

ξp(x0){1− e2(x0)[1− t2(x0)]}−1/2 ≈ ξ1(x0), (28)

where e(x0) is the eccentricity of the ellipsoid, ξe(x0), ξp(x0) and e(x0) depend
on Ω and are determined self-consistently. The outer region of the ellipsoid
(darkened) is given by

ξ1(x0) ≤ ξ′ ≤ ξ0(t′) at 0 ≤ |t′| ≤ t(x0). (29)

Using the integral form of equations for functions y(ξ′) and ψ0(ξ′|x0), it is
possible to cast equation (26) to such form, that does not contain terms of type
a2l(x0)P2l(t)ψ2l(ξ|x0) (they are cancel each other), and equation (26) acquires
the form∑

l≥1

P2l(t)ξ
2l

{
a2l(x0)S2l,2l(x0) +

∑
m≥1

(1− δm,l)a2m(x0)S2m,2l(x0)

}
=

= −ξ
2

6
P2(t)−

∑
l≥1

P2l(t)ξ
2l

{
I2l(x0)

2
+
L2l(x0)

Ω2
+D2l(x0)

}
.

(30)
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According to orthogonality of the Legendre polynomials from equality (30) we
find the system of algebraic equations for integration constants

a2(x0)S2,2(x0) +
∑
m≥2

a2m(x0)S2m,2(x0) =

= −1

6

(
1 + 3I2(x0)

)
− L2(x0)

Ω2
−D2(x0),

a2l(x0)S2l,2l(x0) +
∑
m≥1

a2m(x0)(1− δm,l)S2m,2l(x0) =

= −I2l(x0)

2
− L2l(x0)

Ω2
−D2l(x0)

(31)

at l ≥ 2. In formulae (30), and (31) introduced the following notations

S2l,2m(x0) =

1∫
t(x0)

P2l(t
′)P2m(t′)dt′

ξ1(x0)∫
ξ0(t′)

(ξ′)1−2m×

×
{

2l(l + 1)

(ξ′)2
ψ2l(ξ

′|x0)−∆ξ′ψ2l(ξ
′|x0)

}
dξ′,

S2l,2l(x0) = (4l + 1)−1ξ−2l1

{
(2l + 1)ψ2l(ξ1|x0) + ξ1

dψ2l(ξ1|x0)

dξ1

}
+

+

1∫
t(x0)

P 2
2l(t)

{
ξ−2l0

[
(2l + 1)ψ2l(ξ0|x0) + ξ0

dψ2l(ξ0|x0)

dξ0

]
−

− ξ−2l1

[
(2l + 1)ψ2l(ξ1|x0) + ξ1

dψ2l(ξ1|x0)

dξ1

]}
dt,

L2l(x0) =

1∫
t(x0)

P2l(t
′)dt′

ξ1(x0)∫
ξ0(t′)

(ξ′)1−2l
{
y2(ξ′|x0) +

2

ε0
y(ξ′|x0)

}3/2

dξ′,

D2l(x0) =

1∫
t(x0)

dt′P2l(t
′)

ξ1(x0)∫
ξ0(t′)

(ξ′)1−2l
{

∆ξ′ψ0(ξ′|x0)
}
dt′,

I2(x0) = −2

1∫
t(x0)

P2(t′){ln ξ0(t′)− ln ξ1(x0)}dt′,

I2l(x0) = (l − 1)−1
1∫

t(x0)

P2l(t
′){[ξ0(t′)]2−2l − [ξ1(x0)]2−2l}dt′.

(32)
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We have two representations of the equilibrium equation solution: in the in-
ner region representation (16), in periphery – (23). Integration constants c2l(x0),
b2l(x0) are determined from the continuity condition on the sphere ξ1(x0) at
0 ≤ |t| ≤ t(x0). In this part of the sphere |t| has a small value, therefore
42(1− t2)5/2 ' 13− 25P2(t) + 18P4(t) + . . . . In the approach to P4(t) inclusive,
integration constants are determined by the following relations

c0(x0) = ξ1
y′(ξ1)

Ω2
+

{
ψ0(ξ1)− ξ21

2
+ ξ1ψ

′
0(ξ1)

}
+

13

175

(
2

ε0

)3/2

Ωξ51 ;

b0(x0) = ξ1

{
ψ0(ξ1)− ξ21

6
− c0(x0) +

13

42 · 25

(
2

ε0

)3/2

Ωξ51

}
;

c2(x0) =
1

6
+
a2(x0)

5ξ21

{
3ψ2(ξ1) + ξ1ψ

′
2(ξ1)

}
− 4

5 · 21

(
2

ε0

)3/2

Ωξ31 ;

b2(x0) = ξ31

{
a2(x0)ψ2(ξ1) +

ξ21
6
− c2(x0)ξ21 −

1

42

(
2

ε0

)3/2

Ωξ51

}
;

c4(x0) =
1

9ξ41

{
a4(x0)[5ψ4(ξ1) + ξ1ψ

′
4(ξ1)] +

6

35

(
2

ε0

)3/2

Ωξ51

}
;

b4(x0) = ξ51

{
a4(x0)ψ4(ξ1)− c4(x0)ξ41 +

3

175

(
2

ε0

)3/2

Ωξ51

}
.

(33)

In formulae (33) ξ1 ≡ ξ1(x0), y′(ξ1) ≡ ∂y(ξ1)/∂ξ1, ψ′2l(ξ1) ≡ ∂ψ2l(ξ1|x0)/∂ξ1,
ψ2l(ξ1) ≡ ψ2l(ξ1|x0).

Systems of equations (31) and (33) are not independent because the coef-
ficients (32) depend on the form of white dwarf’s surface ξ0(t) determined by
solutions (16) and (23). Therefore, systems of equations (31) and (33) should
be solved by a self-consistent method of iterations. In the zero approximation
for the surface of a rotating white dwarf we accept the Chandrasekhar sphere
(ξ0(t) = ξ1(x0)). In this approximation only S2l,2l(x0) are non-zero, and con-

stant a
(0)
2 (x0) is determined by

a
(0)
2 (x0) = −{6S(0)

2,2(x0)}−1 = −5

6
ξ21(x0)

{
3ψ2(ξ1|x0) + ξ1ψ

′
2(ξ1|x0)

}−1
(34)

and does not depend on the angular velocity Ω. All other constants a
(0)
2l (x0)

at l ≥ 2 are zero. This approximation corresponds to the Milne-Chandrasekhar
(Milne, 1923; Chandrasekhar, 1933) approximation in the polytropes theory and

is applicable for small angular velocities. In this approximation we find c
(0)
0 (x0),

b
(0)
0 (x0), c

(0)
2 (x0), b

(0)
2 (x0) by expressions (33). Found in this way constants de-

termined the zero approximation of functions (16) and (23). The surface of a
rotating white dwarf is close to the surface of a rotational ellipsoid. Therefore
in the subsequent iteration of ξ0(t) we adopt the surface of such ellipsoid, whose
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polar and equatorial radii are determined from functions (16) and (23) in the
zero approximation. In this case, the coefficients I2l(x0), L2l(x0), D2l(x0) and
S2m,2l(x0) at l ≥ 1 are already non-zero, the functions S2l,2l(x0) are being spec-

ified. From system (31) we determine constants a
(1)
2 (x0), a

(1)
4 (x0), which makes

it possible to find constants b
(1)
2l (x0), c

(1)
2l (x0) and specify the surface equation

ξ0(t) etc. It is enough to perform 4-5 iterations. As a result we obtain functions
(16) and (23) with integration constants depending on x0 and ω, which deter-
mine the shape of the white dwarf’s surface, not only the polar and equatorial
radii

Rp(x0|ω) =
R0

µeε0
ξp(x0|ω), Re(x0|ω) =

R0

µeε0
ξe(x0|ω). (35)

Herewith ξp(x0|ω) is determined by condition YI(ξ, 0) = 0 and ξe(x0|ω) – by
condition YII(ξ, π/2) = 0. The stellar surface ξ0(t) is determined by conditions

YI(ξ, θ) = 0 at 1 ≥ |t| ≥ t(x0),

YII(ξ, θ) = 0 at t(x0) ≥ |t| ≥ 0.
(36)

The volume of a white dwarf equals

V (x0|ω) =
4π

3

{
R0

µe

}3

v(x0|ω), v(x0|ω) =
1

ε30

1∫
0

ξ30(t)dt. (37)

Its mass is determined by integration of the density ρ(r) over the volume

M(x0|ω) =
M0

µ2
e

M(x0|ω),

M(x0|ω) =

1∫
0

dt

ξ0(t)∫
0

ξ2
{
Y 2(ξ, θ) +

2

ε0
Y (ξ, θ)

}3/2

dξ.

(38)

The moment of inertia relative to the axis of rotation is

I(x0|ω) =

∫
ρ(r)r2 sin2 θdr =

M0R
2
0

µ4
e

J (x0|ω),

J (x0|ω) =
1

ε20

1∫
0

(1− t2)dt

ξ0(t)∫
0

ξ4
{
Y 2(ξ, θ) +

2

ε0
Y (ξ, θ)

}3/2

dξ.

(39)

The value of equatorial gravity is

GM(x0|ω)

R2
e(x0|ω)

− ω2Re(x0|ω) =
GM0

R2
0

ge(x0|ω),

ge(x0|ω) =
M(x0|ω)ε20
ξ2e(x0|ω)

− ω2

ω2
0

ξe(x0|ω)

µeε0
.

(40)
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The total energy of a white dwarf is

E(x0|ω) = E0(x0|ω) + Egrav(x0|ω) + Erot(x0|ω), (41)

where E0(x0|ω) is the kinetic energy of the electron subsystem, Egrav(x0|ω) is
the gravitational energy of the nuclear subsystem, Erot(x0|ω) is the energy of
the rotation of a star as a whole. Using relations between the pressure P0(x) and
the energy E0(x) of an ideal homogeneous electron subsystem (with a number
of electrons Ne in a volume V )

P0(x) =
(m0c

~

)3
(9π2Ne)

−1x4
dE0(x)

dx
, (42)

we can obtain the expression for the volume density of energy

E0(x) =
E0(x)

V
= 3x3

x∫
0

ds

s4
P0(s) =

πm4
0c

5

3h3

{
x3[(1+x2)1/2−1]− 1

8
F(x)

}
. (43)

The density of kinetic energy in an inhomogeneous model E(x(r)) is obtained
by substitution x→ x(r) in formula (43), therefore

E0(x0|ω) =

∫
E0(x(r))dr =

E0

µ3
eε

3
0

1

4π

∫
V

{
x3(ξ)[(1+x2(ξ))1/2−1]−1

8
F(x(ξ))

}
dξ,

x(ξ) = ε0

{
Y 2(ξ, θ) +

2

ε0
Y (ξ, θ)

}1/2

≡ ε0X(ξ, θ), (44)

where

E0 = G
M2

0

R0
=

(
3

2

)1/2
1

4π

h3/2c7/2m0

G3/2m3
u

(45)

is the scale of energy.
According to formula (2) the gravitational energy can be represented in the

form

Egrav(x0|ω) = −E0ε0
2µ3

e

(4π)−2
∫∫
V

X3(ξ1, θ1)X3(ξ2, θ2)|ξ1 − ξ2|−1dξ1dξ2. (46)

Using equation (24) and definition of kernel (25) we obtain the relation

(4π)−1
∫
V

X3(ξ2, θ2)|ξ1 − ξ2|−1dξ2 =

= Y (ξ1, θ1)− 1 + C(x0|ω)− ξ21ω2(1− P2(t1))(3µeω
2
0ε

3
0)−1,

C(x0|ω) = (4π)−1
∫
V

X3(ξ, θ)
dξ

ξ
.

(47)
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This allows us to represent Egrav(x0|ω) in the form of an integrals’ sum by a
vector ξ

Egrav(x0|ω) = −E0ε0
2µ3

e

{
(4π)−1

∫
V

Y (ξ, θ)X3(ξ, θ)dξ+

+ [C(x0|ω)− 1]M(x0|ω)− ω2

µeω2
0ε0
J (x0|ω)

}
.

(48)

The energy of rotation is

Erot(x0|ω) =
E0

2µ4
e

J (x0|ω)
ω2

ω2
0

. (49)

3.1. Determination of model parameters and characteristics of white
dwarfs according to the observed data

There are two parameters in the considered model – the relativistic parameter
x0 and the chemical composition parameter µe ≈ 2.0. The angular velocity ω
compounds to its observed value. The mass of a white dwarf that is a component
of a binary system can be determined from observations of orbital motions of
components, using the Kepler law.

1. For the white dwarf V1460 Her there is known the period of rotation P =
38.9 s, which corresponds to the angular velocity ω = 0.162 s−1. The observed
value of mass Mobs = 0.869M� is given in the work of Ashley et al. (2020).
In this case the inverse problem is completely defined, which allows us to
determine the parameter x0 for this white dwarf as a root of the equation

Mobs =
M0

µ2
e

M(x0|ω), (50)

where M(x0|ω) is determined by expressions (38). According to our cal-
culations, this white dwarf corresponds to the model with the relativistic
parameter

x0 = 1.850 at µe = 2.0. (51)

The dimensionless values of characteristics calculated by formulae (35) –
(49) are shown in Tab. 1. Herewith E (x0|ω) is the total energy of a white
dwarf in units E0µ

−3
e . The values ξp(x0|ω) and ξe(x0|ω) correspond to the

Table 1. Characteristics of the white dwarf V1460 Her.

ξp(x0|ω) ξe(x0|ω) M(x0|ω) J (x0|ω) ge(x0|ω) E (x0|ω)
1.9010 1.9891 1.20668 0.67521 0.341987 −0.308615
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following parameters of the polar and equatorial radii

Rp(x0|ω) ∼= 6.70 · 103 km, Re(x0|ω) ∼= 7.01 · 103 km. (52)

According to these data, we find the average matter density of a white dwarf

ρ̄ = Mobs

{
4

3
πR2

e(x0|ω)Rp(x0|ω)

}−1
= 1.258 · 106 g/cm

3
, (53)

as well as the matter density in the stellar center according to formula (2)

ρc =
muµe
3π2

(mec

~

)3
x30 = 12.449 · 106 g/cm

3
. (54)

The maximal (critical) angular velocity for this white dwarf stemming from
the formula

ωmax =

(
GMobs

R3
e

)1/2

, (55)

equals 0.581 s−1 and the ratio η = ω/ωmax = 0.279.

2. For the white dwarf LAMOST J024048.51+195226.9 from observations there
is known only the period of rotation P = 25 s (angular velocity
ω = 0.251 s−1), and its mass is unknown (Pelisoli et al., 2021). In this sit-
uation, there are not enough observed data for the accurate solution of the
inverse problem. It is only possible to ascertain the parameter x0 and char-
acteristics of a white dwarf. The critical angular velocity is determined from
formulae (40) at ge(x0|ω) = 0

ωmax = ω0

{
µeε

3
0M(x0|ωmax)

ξ3e(x0|ωmax)

}1/2

. (56)

The angular velocity of this white dwarf is very high. Let us assume that it
is close to the maximal value. Putting in equation (56) ωmax = ω, we find
the root of this equation

x0 = 1.383 at µe = 2.0. (57)

This value of x0 corresponds to the following values of characteristics

M(x0|ω) = 1.07886; J (x0|ω) = 1.1004;

ξp(x0|ω) = 1.3732; ξe(x0|ω) = 1.9422;

M(x0|ω) = 0.779M�; Rp ∼= 7.56 · 103 km; Re ∼= 10.67 · 103 km.

(58)

The average matter density of a white dwarf and the matter density in the
center equal ρ̄ = 0.429 · 106 g/cm

3
and ρc = 5.201 · 106 g/cm

3
respectively.
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3. Analogous estimates we performed for the white dwarf CTCV J2056-3014
with the period of rotation P = 29.6 s (ω = 0.212 s−1) (Lopes de Oliveira
et al., 2020). In the approximation ωmax = ω we find that

x0 = 1.209 at µe = 2.0;

M(x0|ω) = 0.966456; J (x0|ω) = 1.1843;

ξp(x0|ω) = 1.1915; ξe(x0|ω) = 1.7271;

M(x0|ω) = 0.697M�; Rp(x0|ω) ∼= 8.14 · 103 km;

Re(x0|ω) ∼= 11.79 · 103 km.

(59)

For this white dwarf ρ̄ = 0.293 · 106 g/cm
3
, ρc = 3.475 · 106 g/cm

3
.

4. Model with Coulomb interparticle interactions

Next, it is reasonable to consider the auxiliary model with Coulomb interparticle
interactions but without axial rotation, putting ω = 0 and using the equations
of state (6)-(8). The model has spherical symmetry and three dimensionless
parameters – x0, µe and the nuclear charge z ≥ 2. In variables

ξ = r/λ(x0), ỹ(ξ|z) = ε−10 {[1 + x2(r)]1/2 − 1} (60)

the equilibrium equation is similar to equation (17)

∆ξ ỹ(ξ|z) = L̂ỹ(ξ|z)−
{
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

}3/2

, (61)

where

L̂ỹ(ξ|z) = ϕ1(x|z)∆ξ

{
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

}1/2

+

+ ϕ2(x|z)
{
d

dξ

[
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

]1/2}2

.

(62)

Here we introduced the notation

ϕ1(x|z) =
1

8x3
df(x|z)
dx

, ϕ2(x|z) =
ε0
8

d

dx

{
1

x3
df(x|z)
dx

}
,

x ≡ x(ξ) = ε0

(
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

)1/2

.

(63)

Equation (61) satisfies the same boundary conditions as equation (17). The root
of equation ỹ(ξ|z) = 0 determines the dimensionless radius of a star, ξ1(x0|z),
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in the scale λ(x0), therefore, expressions for the mass and radius are analogous
to relations (35), (38),

R(x0|z) =
R0

µeε0
ξ1(x0|z), M(x0|z) =

M0

µ2
e

M(x0|z),

M(x0|z) =

ξ1(x0|z)∫
0

{
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

}3/2

ξ2dξ.

(64)

The solutions of equation (61) are found numerically in the region of the
parameters 1 ≤ x0 ≤ 3; 2 ≤ z ≤ 12. Dependence of the dimensionless mass
M(x0|z) and the dimensionless radius on the parameters (x0, z) are illustrated
in Tab. 2. As it was shown in Table, the relative decrease of the mass due

Table 2. Dependence of the dimensionless massM(x0|z) and the dimensionless radius

ξ1(x0|z) on the parameters x0 and z (z = 0 corresponds to the standard model).

x0
M(x0|z) ξ1(x0|z)

z = 0 z = 2 z = 6 z = 12 z = 0 z = 2 z = 6 z = 12
1.0 0.707066 0.689037 0.673304 0.65581 1.03478 1.00101 0.98820 0.97452
2.0 1.24303 1.22092 1.20126 1.17904 2.06029 2.02512 2.00634 1.98521
3.0 1.51862 1.49465 1.47331 1.44912 2.78229 2.74631 2.72424 2.70033

to Coulomb interparticle interactions {M(x0|0) − {M(x0|z)}{M(x0|0)}−1 at
z = 2 equals 2.5% at x0 = 1 and 1.6% at x0 = 3; at z = 6 respectively 4.8%
at x0 = 1 and 3% at x0 = 3; similarly at z = 12 we have 7.2% at x0 = 1 and
4.6% at x0 = 3. The relative decrease of the radius due to Coulomb interparticle
interactions is a monotonously decreasing function of the relativistic parameter
x0 and a monotonously increasing function of the charge z and does not exceed
5.8%.

Equation (61) can be simplified by taking into account that derivatives
dEcor(x)/dx and dE2(x)/dx almost do not depend on x. Therefore, ϕ2(x|z) is
very small and it can neglected. The function ϕ1(x|z) weakly depends on x and
can be approximated by expression ϕ1(x|z) ≈ β(z)ϕ1(x0|z),

ϕ1(x0|z) = α0

[
1

π
+

2d0
3γ

z2/3
]

+
4

3
α2
0

{
dεcor(x0)

dx0
+ z4/3

dε2(x0)

dx0

}
. (65)

Since for small and intermediate values of the variable ξ{
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

}1/2

≈ ỹ(ξ|z)
{

1 +
2

ε0

}1/2

, (66)

equation (61) can be approximately rewritten in the form{
1−

(
1 +

2

ε0

)1/2

β(z)ϕ1(x0|z)
}

∆ξ ỹ(ξ|z) = −
{
ỹ2(ξ|z) +

2

ε0
ỹ(ξ|z)

}3/2

. (67)
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Passing from the variable ξ to the variable ζ employing ξ = kζ at

k ≡ k(x0|z) =

{
1−

(
1 +

2

ε0

)1/2

β(z)ϕ1(x0|z)
}1/2

, (68)

equation (67) acquires the form

∆ζ ỹ(kζ|z) = −
{
ỹ2(kζ|z) +

2

ε0
ỹ(kζ|z)

}3/2

. (69)

Due to the fact that equation (69) does not differ from equation (17), ỹ(kζ|z) =
y(ζ), where y(ζ) is the solution of equation (17). From the condition y(ζ) = 0
we obtain the dimensionless radius of a star ζ1(x0) = ξ1(x0), and from the
condition ỹ(ξ|z) = 0 – the radius ξ1(x0|z) = kξ1(x0). The mass and radius of a
white dwarf are determined by the equilibrium equation in approximation (67)

M(x0|µe|z) = k3(x0|z)
M0

µ2
e

M(x0),

R(x0|µe|z) = k(x0|z)
R0ξ1(x0)

µeε0(x0)
,

(70)

where M(x0) and ξ1(x0) correspond to the Chandrasekhar model. Approxima-
tions (65) and (66) create small errors in the calculation of the model character-
istics. At β(z) = 0.75 + (z− 6) · 0.0033 the relative deviation of mass, calculated
by formula (70) from the above in Tab. 2, is less than 0.1%.

Approximations (65) and (66) allow us to rewrite the equilibrium equation of
a white dwarf taking into account the axial rotation and Coulomb interparticle
interactions{

1−
(

1 +
2

ε0

)1/2

β(z)ϕ1(x0|z)
}

∆ξ,θỸ (ξ, θ) = Ω2−
{
Ỹ 2(ξ, θ) +

2

ε0
Ỹ (ξ, θ)

}3/2

.

(71)
By substitution ξ = k(x0|z)ζ, equation (71) reduces to equation (10) for the
function Ỹ (kζ, θ). Therefore, Ỹ (kζ, θ) = Y (ζ, θ) is the solution of equation
(10) in which there should be made the replacement ξ → ζ. Thus, all the
characteristics of a white dwarf are obtained from those calculated by formulae
(37)-(49). Since r = k(x0|z)λ(x0)ξ, then

ξe(x0|ω|z) = k(x0|z)ξe(x0|ω); ξp(x0|ω|z) = k(x0|z)ξp(x0|ω);

v(x0|ω|z) = k3(x0|z)v(x0|ω); M(x0|ω|z) = k3(x0|z)M(x0|ω);

J (x0|ω|z) = k5(x0|z)J (x0|ω); |E (x0|ω|z)| = k5(x0|z)|E (x0|ω)|;
ge(x0|ω|z) = k(x0|z)ge(x0|ω).

(72)
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Table 3. Macroscopic characteristics of the white dwarf V1460 Her with a known

mass.

z M(x0|ω) M/M� ξp(x0|ω|z) Rp, 103km ξe(x0|ω|z) Re, 103km
2 1.20668 0.869 1.8898 6.66 1.9774 6.96
6 1.20668 0.869 1.8810 6.62 1.9672 6.93
12 1.20668 0.869 1.8685 6.58 1.9551 6.89

Table 4. Macroscopic characteristics of the white dwarf LAMOST

J024048.51+195226.9.

z M(x0|ω|z) M/M� ξp(x0|ω|z) Rp, 103km ξe(x0|ω|z) Re, 103km
2 1.0568 0.763 1.3638 7.50 1.9289 10.60
6 1.0378 0.749 1.3556 7.45 1.9173 10.54
12 1.0155 0.733 1.3458 7.40 1.9034 10.46

Table 5. Macroscopic characteristics of the white dwarf CTCV J2056-3014.

z M(x0|ω|z) M/M� ξp(x0|ω|z) Rp, 103km ξe(x0|ω|z) Re, 103km
2 0.9450 0.682 1.1826 8.07 1.7142 11.70
6 0.9266 0.669 1.1749 8.02 1.7030 11.63
12 0.9049 0.653 1.1656 7.96 1.6896 11.54

5. Conclusions

It is known from observations that the average masses of single white dwarfs are
close to 0.6M�. There is a small number of white dwarfs of large masses in binary
systems, which are close to the Chandrasekhar limit due to accretion effects. The
considered objects in this article should belong to the typical moderately massive
white dwarfs, the prototype of which is Sirius B. From numerous observations
it follows that the mass of Sirius B equals (1.018± 0.0011)M�, and its average
radius is (0.8089±0.0046) ·10−2R� ' (5.63896 ·103±32.03164) km (Bond et al.,
2017). Obviously, not very large masses of such white dwarfs are due to their
rapid rotation. Unfortunately, there is no reliable data on the angular velocity
of Sirius B.

1. For the white dwarf V1460 Her from the observations there are known the
dynamic mass and angular velocity, which creates an ideal possibility to de-
termine the relativistic parameter x0 and calculation of all required charac-
teristics. Axial rotation and Coulomb interparticle interactions are compet-
ing factors, their impacts being small. Therefore, we take them into account
in a linear approximation, neglecting the cross-effects and use of the rela-
tivistic parameter x0, which were found within the model with axial rotation
(without Coulomb interparticle interactions). As it was shown in Tab. 3, the
influence of Coulomb interparticle interactions lead to decreasing of white
dwarf sizes.
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2. From observations of white dwarfs LAMOST J024048.51+195226.9 and
CTCV J2056-3014 there are known only their angular velocities. In this
case, we performed an evaluation of characteristics (mass, polar and equa-
torial radii), assuming that the observed angular velocity is close to the
maximal angular velocity ωmax. Dependence of characteristics on a chemi-
cal composition parameter (on average the nuclear charge z) for given two
white dwarfs is illustrated in Tabs. 4 and 5. Coulomb interparticle inter-
actions lead to decreasing of the mass and sizes of white dwarfs without
changing a mass-radius relation.

3. As it follows from our calculations, the values of masses of three white dwarfs
are close to each other and do not exceed the mass of the Sun. Moments of
inertia of these white dwarfs have the same order of magnitude, and in the
Chandrasekhar model they equal 0.63670 for V1460 Her, 0.76149 for LAM-
OST J024048.51+195226.9 and 0.80515 for CTCV J2056-3014. To calculate
the moment of inertia of the white dwarf Sirius B in the Chandrasekhar
model, it is necessary to solve the inverse problem, determining parameters
x0 and µe from the system of equations

R(x0|µe) =
R0

µeε0
ξ1(x0), M(x0|µe) =

M0

µ2
e

M(x0),

M(x0) =

ξ1(x0)∫
0

{
y2(ξ) +

2

ε0
y(ξ)

}3/2

ξ2dξ,

(73)

putting instead R(x0|µe) and M(x0|µe) their observed data. Thus we find
that x0 = 2.3806, µe = 1.9879, and the dimensionless moment of inertia
calculated by the formula

J (x0|0) =
2

3ε20

ξ1(x0)∫
0

{
y2(ξ) +

2

ε0
y(ξ)

}3/2

ξ4dξ (74)

equals 0.51178. All this gives reasons to hope that the white dwarf Sirius B
has a rapid axial rotation, and determining its speed from observations is an
urgent problem.
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