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Abstract. The parameter space of binary star light curve models is highly com-
plex and degenerate, thus basic fitting approaches often fail to yield a good (and
correct) estimate of the parameter values and their uncertainties. On the other
hand, we have an increasingly large number of fitting and sampling algorithms
available that can be relatively easily interfaced with open-source eclipsing bi-
nary packages, like PHOEBE 2. We showcase several fitting methods, including
local and global minimizers, nested sampling and machine learning methods,
and evaluate their performance on fitting a light curve model with PHOEBE 2.
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1. Introduction

Robust fitting of the light- and radial velocity curves has been an outstanding
issue in the field of binary stars for several decades now. As Prsa & Zwitter
(2005) showed, the parameter space of the binary star models is highly complex
and degenerate, which leads to correlations between certain parameter and poses
difficulties to finding the global optimum, as well as estimating the parameter
uncertainties. With the advancements made in both technology and computing,
we now have much better data and more precise models. The development of
PHOEBE 2 (Prsa et al., 2016) as a python package has opened up a new world
of possibilities when it comes to fitting, since it can be easily interfaced with
the many open-source optimizing packages that python offers.

In order to showcase the performance of several different approaches to fitting
light curve data, we attempt to retrieve the true values of the parameters used to
generate a synthetic light curve with PHOEBE 2 with added non-white noise.
We fit for the mass ratio (¢), inclination (incl), eccentricity (e), argument of
periastron (w), fractional radii (r1, r2), effective temperature of the primary
(Test,1), temperature ratio (Tem 2/Tefr 1), passband luminosity (pblum) and third
light (13).
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2. Minimizers

The simplest approach to fitting is through using an optimizing algorithm. Op-
timizing algorithms can be local, meaning they would typically find a local min-
imum close to the initial point, or global, which explore the parameter space
stochastically and more robustly in search for a global minimum. We have ap-
plied four optimizing algorithms from the scipy.optimize library: Nelder-Mead
Simplex (NMS), Powell’s and L-BFGS-B (local) and differential evolution (DE,
global). The minimization results are given in Fig. 1 and show that differen-
tial evolution outperforms the local minimizers. However, the price in accuracy
is being paid by the computation time, which is significantly longer for global
minimizers.
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Figure 1. Cross-sections of the minimizer solutions in two-parameter space, with the
chosen initial point relatively close to the true solution (top) and relatively far from
the true solution (bottom).

3. Samplers

As we demonstrated in Section 2, global minimizers, at the cost of computational
time, can yield a solution close to the global minimum. However, samplers are
more robust in terms of exploring the topology of the parameter space around
the global minimum and, thus, yield more reliable parameter uncertainties. Us-
ing MCMC for this purpose has become very common in our field, but it comes
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with certain caveats. MCMC is not a search algorithm or optimizing algorithm
(Hogg & Foreman-Mackey, 2018) and as such, only performs well once initial-
ized close to the global minimum. Otherwise, we risk abuse of the algorithm at
the cost of prohibitively long convergence times and incorrect interpretation of
the results. Fig. 2 shows the results of sampling the parameter space of our syn-
thetic light curve with the package emcee (Foreman-Mackey et al., 2013), with
both bad use of MCMC (using it as a search algorithm for the global minimum)
and good use of MCMC (using it to sample the posterior around the global
minimum).

-] g8

P [ % ; 1

‘e . Y| N— %

T ;%%@%ﬁ )

) ) Boame s ||

;@@w%@@/im

N A Pl ’ "
LUBERI e

Figure 2. Examples of sampling the posterior with MCMC using emcee. Left: wide
initial sampling range and use as a search algorithm to find the global minimum. The
logp plot in the top right corner shows the solution is still converging. Right: initial
sampling range in a tight ball around the global minimum. The logp plot in the top
right corner shows oscillations around a constant value, which is a good indicator of a
converged sampling.

Fortunately, other sampling algorithms can yield more robust results if we
are not completely certain of the position of the global minimum. Based on
our synthetic light curve test, nested sampling (Skilling, 2004) begins to reveal
structure around the true global minimum in the likelihood of some parameters
after several hundred iterations. Fig. 3 shows the trace plots of the position of
the live points in all parameters for a nested sampling run with the package
dynesty (Speagle, 2019). The sampling has not completely converged, but the
values of the parameters that the light curve is sensitive to quickly move towards
the global optimum.
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Figure 3. Trace plots of the positions of the live points in each parameter for a
non-converged run of nested sampling with dynesty. The true parameter values are
represented by red lines.

4. Machine Learning

Finding an initial solution for the light curve parameters usually involves a lot
of manual work (adjusting the parameters and comparing the model with the
data, initializing minimizers from different starting points, etc.). This approach
becomes ineffective when dealing with large data sets. To address this, we have
explored simple approaches using pre-computed synthetic databases and an al-
gorithm based on nearest-neighbors search. Estimates of the model parameters
found in this way are based on light curve similarity between the fitted light
curves and a pre-computed database. The parameter estimates are computed
as a distance-weighted mean (dw-mean) from the parameter values of the light
curve’s nearest neighbors, while the range of possible values (min/max) is taken
as the minimum and maximum of the parameter values across the nearest neigh-
bors. This can be useful for providing the boundaries of the prior distributions
used in MCMC or nested sampling.

Table 1 shows the parameter estimates from a nearest-neighbors distance-
weighted computation for our test light curve. Because our data constrain the
model well, our results are very close to the true parameter values. This is not
always the case due to the parameter degeneracies in our model, but is a useful
first step towards finding a better fit that eliminates the need for manual fitting.
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Table 1. Distance-weighted estimates of the parameter values from a nearest neigh-
bors search algorithm and their respective minimum and maximum values, compared
to the true parameter values used to generate the test light curve.

‘ min dw-mean  max TRUFE
q 0.5117 0.764 0.993 0.765
incl 80.915 85.925 89.996 &7.3
rl4+r2 | 0.323 0.397 0.489 0.3817
r2/rl 0.558 0.678 0.798 0.6394
Teff1 5013 6053 6992 6332
T2/T1 | 0.771 0.879 0.962 0.8678
esinw 0.014 0.145 0.246 0.1379
ecosw | 0.009 0.031 0.052 0.03339
pblum | 10.17 11.75 13.29 12.5664
13 0.001 0.045 0.1 0

In some cases, the solution is not as well constrained because the nearest
neighbors algorithm is not as sensitive to changes in certain parameters. To
visualize this, we can use a dimensionality reduction technique, like t-SNE (van
der Maaten & Hinton, 2008), to demonstrate the parameter value distributions
across the parameter space in terms of light curve similarity. Fig. 4 showcases
the value distributions of inclination, temperature ratio, mass ratio and fillout
factor for a data set of synthetic contact binary light curves. It is clear that the
light curve similarity is driven by the inclination and temperature ratio (top
row), while the fillout factor and mass ratio values (bottom row) are distributed
relatively uniformly across the map. Fitting for these two parameters with a
nearest-neighbor search would thus yield results that are not as reliable as those
for inclination and temperature ratio.

5. Conclusion

The best way of modeling eclipsing binaries remains a careful, hands-on ap-
proach. However, the era of big data is urging us to explore automated methods
and advanced treatment of our data and model uncertainties. With the de-
velopment of open source packages for modeling in wide-spread programming
languages like python, a plethora of methods become available to us, but not
all are suitable for our particular problem. The findings presented here are an
initial step towards learning more about the fitting methods available to us
and how to best apply them to our problem. Using a test synthetic light curve
and PHOEBE 2, we have demonstrated that: global optimizers outperform lo-
cal optimizers at the cost of large computation times, simple machine learning
approaches can give us initial estimates of the parameter values and potential
prior ranges, while samplers come in many flavors, some of which are suitable
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Figure 4. Parameter distributions over a 3D projection of the 4D parameter space in
a contact binary light curve database generated with PHOEBE 2.

for posterior estimation near the global minimum, like MCMC, and others, like
nested sampling, can reveal the underlying structure of the likelihood when we
do not have a good estimate of the position of the global minimum.
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