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Abstract. The co-adding, averaging, or stacking of data are popular tech-
niques to improve scientific outcomes in astronomy, especially in the case of
extraction of very faint sources. These methods allow to increase the signal-to-
noise ratio and to decrease the point spread function width, which improves
the accuracy of segmentation. This paper deals with a brief review of image
co-adding algorithms and their evaluation regarding improving the qualitative
parameters of the image data.
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1. Introduction

The main goal of image stacking methods is to optimally combine all available
measurement into a better representation of the sky given all instrumental ef-
fects and limitations. In the ideal case, the signal-to-noise ratio (SNR) increases
by the square root of the number of images in the stack. The simplest but ro-
bust methods of image combination are unweighted average and median, which
is worst in term of SNR unless all input images have the same Gaussian noise
(Bertin et al., 2002). More sophisticated co-addition methods are exploring re-
lations between frames in the stack. One of the main bottlenecks of combining
astronomical images is varying seeing and noise. Therefore some authors pro-
pose to perform blind deconvolution before co-adding (Lucy & Hook, 1992) or
vice versa convolution of each image with the filter matching its point spread
function and then accumulate with weight inversely proportional to the sky
variance (Becker et al., 2012). Methods using so-called point spread function
(PSF) homogenization allow combining multi-epoch data (Bertin, 2011). Image
co-addition methods optimized for source detection and flux measurement were
proposed by Annis et al. (2014) or Zackay & Ofek (2017a, 2017b).

Paper is organized as follows. Section 2 gives an overview of co-adding meth-
ods of astronomical images. Section 3 briefly introduces testing dataset and
Section 4 describes evaluation method of frames obtained by standard averag-
ing and method proposed by Zackay & Ofek. Finally, Section 5 concludes the
paper.
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2. Image co-addition

One of the most appropriate methods for detecting and measuring faint sources
is the weighted average of N images

S =

∑N
i wipiMi∑N

i wi
, (1)

where Mi is i-th image in the stack, pi is the flux-scaling parameter (Bertin
et al., 2002), and wi is the weight of the image, which depends on the image
data. Typically, as weight can be used inverse variance, relative variance or
absolute standard deviation, implemented in SWarp1 by Bertin et al. Annis
et al. (2014) proposed to define weight of i-th image as

wi =
Ti

∆P 2
i σ

2
i

, (2)

where Ti is transparency, that is proportional to the product of the telescope
effective area, detector sensitivity and atmospheric transparency, ∆Pi is the full
width at half maximum (FWHM) of the PSF, and σ2

i is the variance of all the
background noises.

Let’s describe the image M with a simple model

M = B ⊗ P + ε, (3)

where B is the background-subtracted sky image, P is the image PSF, and ε is
an additive white Gaussian noise term. The optimal statistic for source detection
at position (x0, y0) for a single image

S(x0, y0) =
∑
x,y

P (x− x0, y − y0)M(x, y)

σ2
, (4)

where σ2 is a variance of the background. Zackay & Ofek (2017a, 2017b) defined
the optimal statistic for source detection at position p ≡ (p1, p2) in an ensemble
of j images as

S(p) =
∑
j,x

FjPx,j
σ2

Mj(x− p), (5)

where Fj is a scalar representing the transparency. Thus, optimal image co-
addition to maximize the signal to noise ratio can be presented in Fourier
space as

Ŝ =
∑
j

FjP̂j
σ2
j

M̂j , (6)

1https://www.astromatic.net/software/swarp
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where sign X̂ represents Fourier transform of X, and sign X denotes the complex
conjugate operation.

3. Image data

In our experiment, we used images of M33 galaxy obtained with the wide-field
camera G2 1600 equipped with full-frame CCD image sensor Kodak
KAF1603ME. This camera, made by Moravian Instruments, is the main cam-
era of small robotic telescope BART, placed in Ondřejov, Czech Republic. The
testing dataset consists of astrometrically aligned frames with two different ex-
posure times (32 s and 64 s), see Figure 1. For each exposure time, we created
a set of four averaged images and four images combined by Zackay & Ofek
method.

Figure 1.: Images used in the experiment. Left: exposure time of 32 s. Right:
exposure time of 64 s.

4. Evaluation of co-added images

There are a couple of published papers focused on the evaluation of the co-
added frames. Besides standard methods like PSNR, Homrighausen et al. (2011)
proposed to use Image Quality metric based on the calculation of Gaussian
FWHM of an image and the conservation of flux, measured by Mean Integrated
Squared Error (MISE). In this paper, we will use statistics of local standard
deviation (LSD), inspired by the works of Fu et al. (2014), Wu & Chang (2015)
and Rakhshanfar & Amer (2016).

We compare parameters of same objects such as object profile, their magni-
tude and FWHM in original and combined images. To detect same objects we
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use Sextractor2. An example of object profile differences is shown in Figure 2.
To compare these profiles, we normalize test images to the maximal value in
the image. We noticed, that co-addition method of Zackay & Ofek influences
to object magnitude and its FWHM. In Figure 3 we compare parameters of
same objects in original and combined images. As we can see, method Zackay
& Ofek changes the object’s magnitude, that can affect astrometric accuracy.
Comparison of FWHM in Figure 3 shows that Zackay & Ofek method can have
significant negative influence to PSF sharpness.
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Figure 2.: Normalized profile of selected object (exposure time of 32 s). Left: X
profile. Right: Y profile
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Figure 3.: Comparison of the object parameters (exposure time of 32 s). Left:
magnitude. Right: FWHM.

2https://www.astromatic.net/software/sextractor
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To evaluate noise, let broke up an image into blocks (5×5 pixels) and calcu-
late local variance. For each block Ri included ni pixels in original image I one
can obtain the mean intensity of the block

µRi =

ni∑
x=1

I(Ri, x)/ni, (7)

where n is number of pixel into i−th block, and local variance σ2
Ri

σ2
Ri =

ni∑
x=1

(I(Ri, x) − µRi)
2/ni. (8)

Thus, local standard deviation is

σLi =
√
σ2
Ri
. (9)

Based on this values, one can build noise level function (NLF) to show the
dependence of a block variance on a block intensity. The range of block intensity
is divided into equal intervals, Figure 4 displays dependency of the average LSD
in these intervals on the intensity of the block, normalized against maximum
intensity in the image. Clearly, the variance of the image combined by Zackay
& Ofek method grows slower compared to original and averaged images.
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Figure 4.: Noise level function. Left: exposure time of 32 s. Right: exposure time
of 64 s.

Another way to evaluate the image noise, according to Fu et al. (2014), is to
use histogram-based statistical method. Figure 5 shows bins with equal width
set up to form a histogram between the minimum and maximum of the local
standard deviations. To calculate the image noise standard deviation, we have
to find the peak of the histogram (i.e. the bin containing the most number of
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blocks). In this case, the best estimation of the noise standard deviation in an
image is calculated according to

σΓ =
1

Γ

Γ∑
γ=1

σLγ , (10)

where σLγ is the LSD value of the block γ in the peak bin and Γ is the number
of block in this bin.
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Figure 5.: Histogram of the local standard deviation. Left: exposure time of 32 s.
Right: exposure time of 64 s.

Table 1.: Estimation of the noise standard deviation σΓ

exposure time original image averaged image Zackay & Ofek
32 s 2.9164 · 10−4 2.2804 · 10−4 7.9014 · 10−5

64 s 2.0902 · 10−4 1.6316 · 10−4 6.1797 · 10−5

Based on Figure 5 and Table 1 we can assume that standard deviation of the
noise in the original and the averaged images is significantly bigger compared
to combined image by Zackay’s method.

5. Conclusions

In this paper, we reviewed methods of astronomical image coaddition and com-
pared averaged images and images combined by Zackay’s method based on PSF
profile, noise level function and the histogram of local standard deviation. We
got that co-addition by Zackay & Ofek method can affect to astrometric ac-
curacy. However, the analysis of noise level function shows that NLF of these
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outputs grows slower, and the best estimation of the noise standard deviation
is significantly smaller compared to original and averaged images.
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