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Abstract. We have generated synthetic light curves for a large number of
combinations of three geometric elements (a mass ratio, an orbital inclination
and a fill-out factor) defining the shape and amplitude of light curves of con-
tact binary stars. The synthetic light curves were represented by trigonometric
polynomials of a 10th order. We have investigated the uniqueness of photomet-
ric mass ratio determination by searching for light curves of a similar shape,
but corresponding to different geometric parameters. The analysis was done for
different precision of Fourier coefficients. The uncertainty of the photometric
mass ratio was found to be as large as 0.25. The uniqueness of the photometric
mass ratio further deteriorates if an unknown third light is present. In such a
case, the uncertainty of the photometric mass ratio reaches as much as 0.45.
The reliability of a light-curve solution improves with an increasing light-curve
amplitude and precision of the Fourier coefficients, which is related to the pho-
tometric precision and number of datapoints. The analysis confirms the known
fact that determination of the mass ratio from light-curve solutions is reliable
for totally eclipsing systems only.
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1. Introduction

The shapes of the binary stars’ components were represented by spheres until
the beginning of the seventies of the last century, without any need to use
the mass ratio as the photometric element (see e.g., Binnendijk, 1960). This
approximation is, however, useful only for stars with well-separated components
having fractional radii r1,2 < 0.1, hence unusable for contact binary stars.

The seminal papers of Lucy (1968 a,b) showed that contact binaries are com-
posed of two main-sequence stars embedded in a common envelope. The shape
of the envelope is dictated by the surface equipotential, Ω, and the mass ra-
tio, q. The papers resulted in several codes to synthetize and model the light
curve (hereafter LC) or other observables (see e.g., Wilson and Devinney, 1971;
Mochnacki and Doughty, 1972; Binnendijk, 1976).

The mass ratio q = M2/M1 is an important parameter for the study of close-
binary evolution. The direct way to determine it is to measure radial velocities
of both components and to determine their semi-amplitudes, K1, K2. The mass
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Figure 1. Dependence of the squared ratio of radii on the mass ratio for five values of

the fill-out factor. The squared ratio gives the depth of the minima in totally eclipsing

systems.

ratio is then found as q = K1/K2. Because the surface equipotential, Ω, of a
contact binary (hereafter we will always assume just contact binaries) is equal
for both components, it is usual to define the fill-out factor f ∈ 〈0, 1〉 as:

f =
Ωinn − Ω

Ωinn − Ωout
, (1)

where Ωinn = Ωinn(q) and Ωout = Ωout(q) are equipotentials corresponding
to the inner and outer critical surface, respectively. For the given q and f , the
Roche model gives the volumes V1,2 = V1,2(q, f) and fractional radii of the
components (point, side, back and pole radii). The mass ratio can be estimated
with some reliability analyzing the LCs of close binary stars: the parameter is
encoded in the shapes of the LCs. This is mainly because for contact binaries
the ratio of the volume radii of the components (for a given fill-out factor) is
a monotonous function of the mass ratio (see Fig. 1). The Roche-lobe (f = 0)
radii of the components can be approximated as (Eggleton, 1983):
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Table 1. Comparison of photometric qph and spectroscopic qsp mass ratios for selected

systems with or without the third light l3. The table lists systems analyzed by Selam

(2004) without qsp knowledge at the time of publication. The type refers to A or W

subtypes of a W UMa type eclipsing binary. The eclipse type (T = total, P = partial) is

based on the photometric elements qph, f , i adopted from Selam (2004). Spectroscopic

mass ratios and values of the third light are taken from: (1) Szalai et al. (2007); (2)

Lu et al. (2001); (3) Pribulla et al. (2009); (4) Özkardeş and Erdem (2010); (5) Pych

et al. (2004); (6) Rucinski et al. (2008); (7) Rucinski et al. (2005); (8) Pribulla et al.

(2006); (9) Pribulla et al. (2008).

Var Name Type qph f i(◦) Eclipse l3 qsp Ref.
V870 Ara - 0.25 0.7 70.0 P - 0.082 1
FP Boo W 0.35 0.1 45.0 P - 0.372 2
DY Cet A 0.45 0.2 77.5 P - 0.356 3
IS CMa - 0.30 0.5 75.0 P - 0.297 4
HI Dra∗ A 0.15 0.7 52.5 P 0.006 0.250 3
VW LMi A 0.25 0.4 72.5 P 0.42 0.423 9
V1363 Ori A 0.55 0.4 52.5 P - 0.205 5
V335 Peg A 0.15 0.1 30.0 P - 0.262 5
V357 Peg A 0.30 0.4 75.0 P - 0.401 6
V592 Per A 0.25 0.3 85.0 T 0.60 0.408 7
V1123 Tau∗ W 0.25 0.4 77.5 T 0.203 0.279 6
V1128 Tau W 0.45 0.3 75.0 P - 0.534 6
DX Tuc - 0.15 0.3 70.0 P - 0.285 1
TV UMi W 0.10 0.1 47.5 P 0.90 0.739 8

∗ the value of the third light was determined from the Hipparcos magnitude brightness
difference of the components. Note: V1128 Tau has two entries in the Hipparcos main
catalog, thus its LC is not affected by the third light.

rL =
0.49q2/3

0.69q2/3 + ln (1 + q1/3)
, (2)

where for the primary component we use q = M1/M2 and q = M2/M1 for
the secondary component1.

The determination of the mass ratio from photometry alone is, however,
rather tricky: the mass ratio strongly correlates with the orbital inclination i
and anti-correlates with the third light l3. Correlations are broken just in the
case of total eclipses. In this case the depth of minima primarily depends on the
mass ratio, and much less on the fill-out factor. The inclination angle does not
affect the minima depth. The inclination angle can then be determined from the
duration of the total eclipse (see Fig. 4 of Mochnacki and Doughty, 1972).

Because ∼ 2/3 of close binary systems are very probably members of triple or
multiple stars (Pribulla and Rucinski, 2006), the effects of the third light cannot

1Further in this paper the mass ratio is always q ≤ 1.
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be neglected. The third light reduces the amplitude of LC (of any variable star)
without changing its shape. The amplitude of LC can be corrected for the third
light as follows:

Atrue = −2.5 log [10−0.4Aobs(1 + l3)− l3], (3)

where Aobs is the observed (reduced) amplitude of LC of the whole system
and the third light is defined2 as a fraction of the flux of the underlying binary
l3 = F3/(F1 + F2).

A fast estimate of photometric elements of contact binaries can be done
by the Fourier coefficients method proposed by Rucinski (1993 a). The method
is applicable even to less precise photometric observations. Selam (2004) used
this technique to determine geometric parameters of contact binaries using the
Hipparcos LCs (Perryman, 1997). The uniqueness of determination of mass
ratios from photometry (hereafter referred to as photometric mass ratios qph)
was not discussed and spectroscopically determined mass ratios qsp were not
known for more than 50% of studied systems at the time of the publication.
For some objects qsp ≈ qph (e.g., FP Boo; see Tab. 1). The presence of the
third light results in erroneous determination of the mass ratio (see VW LMi,
V592 Per, and TV UMi, where qph � qsp). But even without the third light, the
agreement between qph and qsp is often poor (e.g., for V1363 Ori or V335 Peg).

Maceroni and van’t Veer (1996) discussed the comparison between qph and
qsp and found no systematic difference. However, it is unclear how often the
photometric mass ratio was adopted from spectroscopy when used in the later
LC modeling.

Terrell and Wilson (2005) criticized a generally widespread opinion that the
photometric mass ratio can be determined from out-of-eclipse parts of LC (i.e.,
from the ellipsoidal variation). They concurred that the photometric mass ratio
can be reliably determined only for contact and semi-detached systems, where
the fractional radii of components are related to the mass ratio. The authors
tested LCs with added noise and confirmed that only totally eclipsing systems
enabled reliable determination of the photometric mass ratio. Unfortunately,
only two geometric configurations (a contact and semi-detached binary) were
investigated.

2. Light-curve grid synthesis

We have used the code ROCHE (Pribulla, 2012) to generate synthetic LCs
normalized to the maximum intensity. The code uses the Roche dimensionless
potential, Ω, to represent tidally distorted surfaces of the component stars. The
surface is divided into triangular elements with an almost equal area (the tri-
angulation is based on the regular icosahedron). The total flux is computed

2Sometimes the third light is defined as l3 = F3/(F1 + F2 + F3).
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from visible elements taking into account mutual reflection, gravity and limb
darkening.

Unlike the previous studies (e.g., Terrell and Wilson, 2005), we wanted to
fully cover the parameter space with the test configurations to investigate the re-
liability of photometric mass ratios. In the case of contact binaries the geometry
of eclipses is mostly3 determined by three parameters [q, f, i].

For our investigation we assumed an F9V spectral-type contact binary with
a convective envelope strictly4 following Lucy’s model (Tlocal ∝ gβ) and set the
following common parameters as: (1) the mean effective surface temperature of
the primary Tmean

1 = 6000 K, (2) bolometric albedos A1 = A2 = 0.5, (3) grav-
ity darkening coefficients β1 = β2 = 0.08 (Lucy, 1967). Linear limb darkening
coefficients were interpolated from tables of van Hamme (1993) for λ = 550 nm
and log g = 4.4 (cgs). The local monochromatic flux was computed using the
black-body approximation.

The surface grid of the primary component consisted of 4000 elements (for
the secondary we matched the size of the elementary triangles to that on the
primary component). The synthetic LC was computed at ∆ϕ = 1◦ steps in
phases. According to Rucinski et al. (2001), the smallest known mass ratio is
observed in SX Crv: q = 0.066 ± 0.003. Hence, we limited the considered mass
ratios to q ≥ 0.05. The configurations with smaller mass ratios are very prob-
ably tidally unstable (Rasio, 1995). Hence, the mass ratio was set at several
values from q ∈ 〈0.05, 1.00〉 with the step ∆q = 0.025. The value of the fill-
out factor is less restricted and possibly covers the whole theoretical range of
f ∈ 〈0, 1〉. The impact of the fill-out factor on the LC is substantially smaller
than that of the inclination angle or the mass ratio. Hence, we considered only
f ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. For orbital inclinations i ≤ 30◦ the LC ampli-
tude is smaller than 5% of the intensity (for any q, f), thus we considered the
following grid of the inclinations: i ∈ 〈30◦, 90◦〉 with the step ∆i = 1◦.

In total, 39× 61× 5 = 11895 LCs were computed.

3. Data analysis

The LC of an eclipsing binary star can be represented by a trigonometric poly-
nomial5 in orbital phases :

I(ϕ) = a0 +

n∑
k=1

ak cos (2πkϕ) +

n∑
k=1

bk sin (2πkϕ). (4)

3To a lesser extent, the LC shape is determined by the temperature of the components and
wavelength/passband of an observation which affect the limb darkening.
4Real contact binaries show departures from Lucy’s model manifested by unequal minima
depths and two subtypes: A and W (see Rucinski, 1993 b).
5An orthonormal basis of functions for equally-spaced data in ϕ ∈ 〈0, 1〉.
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Because we did not consider any surface inhomogeneities or streams of mass,
the synthetic LCs are perfectly symmetric (I(0.5 − ∆ϕ) = I(0.5 + ∆ϕ)) with
respect to ϕ = 0.5. Thus bk = 0 and it is enough to use the cosine terms only.

The mean value of LC is represented by the coefficient a0, while a1 deter-
mines the difference of depths of the primary and secondary minima (which
is related to the difference in temperatures of both components and the wave-
length/passband of observations), a2 expresses the amplitude of LC, and a4

relates to the fractional radii of the components (or the fill-out factor in contact
binaries). The Fourier coefficients can be used to separate detached and contact
binaries. For contact binaries a4 > a2 (0.125− a2) (see Selam, 2004).

All synthetised LCs were represented by symmetric trigonometric polynomi-
als to ”encode” the informational contents of the LCs (360 phase points) to a few
Fourier coefficients. We found that LCs corresponding to partial eclipses can be
sufficiently represented by trigonometric polynomials of a 10th order (r.m.s. of
residuals ∼ 0.0002). Representing an LC of a totally-eclipsing system requires at
least a 20th order (see Rucinski, 1993 a). The residuals are still ∼ 5 times larger
than those for the case of partial eclipses. It is, however, well known (Mochnacki
and Doughty, 1972; Terrell and Wilson, 2005) that mass ratios of totally eclips-
ing systems are reliable. Hence, we decided to use only the first 11 coefficients
(from a0 to a10) for all synthetic LCs.

4. Uniqueness of the solution

The question is: how many groups of geometric parameters [q, f, i] lead to a
similar (within reasonably large residuals given by the photometry precision)
shape of LC which is represented by a point A in the algebraic space of Fourier
coefficients a0 − a10? Intuitively, the uniqueness is related to the precision of
data. For our purpose we have defined the difference:

d =

√√√√ 10∑
k=0

(ak − a
′
k)2, (5)

which is the distance of two points A and A
′

in the space of Fourier coeffi-
cients. The precision of the solution is represented by the volume of a sub-space
where for all [q, f, i] holds d ≤ d0, where d0 is an arbitrarily chosen difference
(related to LC precision). If such sub-space is single and continuous, the solution
for a given LC is unique. The volume of this subspace then relates to the uncer-
tainty of determination of the vector [q, f, i]. On the other hand, having two or
more distinct and separated sub-spaces means ambiguity (i.e., non-uniqueness)
of the solution.

The first approach was to investigate the total number of similar LCs from all
LCs (Fig. 2). The number of similar LCs decreases with an increasing inclination
i (and an increasing amplitude).
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Figure 2. The number of similar LCs for all combinations of considered [q, f, i] and

d = 0.005.
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The second approach was to investigate the difference d of a selected test
LC with the LCs corresponding to all other combinations of [q, f, i]. Here we
rather arbitrarily selected two sets of the geometric elements - one corresponding
to partial and one to total eclipses. In both cases we set the fill-out factor to
f = 0 to maximize the difference between the total and partial eclipse cases.
Fig. 3 shows that the area of the smallest difference is much larger in the case of
partial eclipses (panel b). Solutions corresponding to d = 0.017 span almost the
whole range of mass ratios, but only some 20◦ in inclinations. In the case of the
selected totally eclipsing system the area corresponding to the same difference, d,
is substantially smaller in mass ratios and inclinations. This is in agreement with
expectation of a less reliable estimate of qph from LCs with smaller amplitudes
and also from LCs with partial eclipses.

An important parameter related to uniqueness of the solution is the Fourier
coefficient a2, which for contact binaries represents the semi-amplitude of LC. In
Fig. 4 we compare true amplitudes Atrue = Imax−Imin of all LCs with estimated
amplitudes Aest = 2a2.

The maximum LC amplitude occurs in the case when q = 1.0 and i = 90◦,
because the flux of a contact binary during the total eclipse drops down to 50%.
Naturally, this is the only case and thus the corresponding LC is unique. But
LCs with smaller amplitudes exist in large areas of the parameter space with a
similar shape and amplitude. Unfortunately, no contact binaries with q > 0.8
have ever been observed (see Rucinski, 1993b).

Fig. 4 shows that the LC amplitude strongly depends on the inclination in the
case of partial eclipses. With the onset of total eclipses, the inclination does not
affect the LC amplitude, just the width of the totality. Hence, small differences
between the LCs are related to Fourier coefficients of higher orders - a4 to a10.
The amplitude of the LC also depends on the fill-out factor f (see Fig. 5). LCs
generated for higher values of f tend to have higher amplitudes even for the
same values of q and i. The lines of a constant amplitude are shifted towards
lower values of i for high mass ratios and higher values of f , which is due to
larger radii of the components.

4.1. Uniqueness of solutions in the a2 − a4 plane

The geometry of the eclipse is mainly described by the amplitude of LC (related
to the mass ratio and inclination) and the minima width (related to the radii
of the components which are given by the fill-out factor for a particular mass
ratio). The LC amplitude and minima width are reflected in the values of a2

and a4 Fourier coefficients. Moreover, the values of these two coefficients cover
the largest area/range (for any other combination of Fourier coefficients) for
physically acceptable ranges of [q, f, i].

If we plot combinations of a2 and a4 for all considered combinations of
[q, f, i], the superposition of different [q, f, i] in the a2−a4 plane means ambiguity
of solutions. The influence of the geometric parameters q and i on the coefficients
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Figure 3. Difference d in the plane of q − i for fixed f = 0. The cross represents

[q, i] for the selected LCs : a) total eclipses (q = 0.725, i = 87◦), b) partial eclipses

(q = 0.625, i = 62◦). Regions above the solid line are the cases with total eclipses,

dashed lines are contours of equal difference.
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Figure 4. Comparison of amplitudes based on the coefficient a2 (solid lines) and true

amplitudes of LCs (dashed lines) for all combinations of [q, i] and f = 0.

a2, a4 is shown in Fig. 6. For clarity, the plot shows just the dependence for one
fill-out factor of f = 1.0. For a fixed value of the inclination i, the solutions
follow solid lines in Fig. 6. For values i < 50◦ the solutions for various q are too
close to be distinguished from each other.

For other fixed values of f the shape of the occupied area is generally nar-
rower towards larger absolute values of both a2 and a4 (see Fig. 7) and at the
same time it is wider around a2 ∈ 〈−0.010, 0.000〉, a4 ∈ 〈−0.010, 0.005〉. For
small amplitudes of the LCs (a2 → 0) and small mass ratios all areas over-
lap. It is clear that the uniqueness of the solution improves with an increasing
amplitude of the LC (and towards total eclipses).

4.2. Uniqueness of solutions in the 11-dimensional space of Fourier
coefficients

To completely investigate uniqueness of LC solutions we must take into account
all eleven Fourier coefficients.
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Figure 5. Comparison of the amplitude (2a2) of LCs for all considered combinations

of [q, f, i]. The solid line is the boundary of total eclipses. Each panel corresponds to

one fixed value of the fill-out factor: a) f = 0, b) f = 0.25, c) f = 0.5, d) f = 0.75,

e) f = 1.
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Our synthetic LCs have resulted in practically zero uncertainties of the
Fourier coefficients. The uncertainties of the Fourier coefficients determined from
real observational data depend on the number and scatter of the data points6.
For our investigation we chose three different uncertainties of the Fourier coef-
ficients, namely ∆ ∈ {0.001, 0.005, 0.01}.

The values of coefficients of lower orders usually span in larger intervals for
all possible combinations of [q, f, i]. The number of accuracy bins covered by
the coefficients of different polynomial orders varies. In the case of the small-
est assumed error of coefficient determination, ∆ = 0.001, we get as many as
6.9×1014 elements of the eleven-dimensional space! If any single 11-dimensional
elementary hypercube (with the side defined by the accuracy) ”contains” more

6In the case of trigonometric polynomials (an orthonormal basis of functions), the uncertainty
of determination of all Fourier coefficients is equal and does not depend on the degree of the
polynomial used.
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than one set of geometric elements [q, f, i], the corresponding solutions are am-
biguous. We will call such elementary hypercubes degenerated. We define the
level of degeneracy (see Fig. 8) as D = Nj − 1, where Nj is the total number of
different vectors [q, f, i] occupying the jth elementary hypercube. It is clear that
having only 11895 combinations of geometric elements, most of the elementary
hypercubes will not be occupied at all.

The results for ∆ = 0.001 indicate that for the selected ranges of elements
[q, f, i] there are mainly non-degenerate areas in the plane of coefficients a2−a4.

Fig. 8 shows that most degenerated solutions occur for smaller values of LC
amplitudes, smaller values of mass ratios and large values of fill-out factors.

There can be similar solutions that correspond to the same values of the mass
ratio, however. Fig. 9 shows the distribution of difference δq = qj,max − qj,min

between the maximum and minimum value of all values of the mass ratio q that
correspond to the jth bin in the a2 × a4 plane.

If we are only interested in the photometric mass ratio qph, we can use Fig. 9
to assess the uniqueness of our solution based on two Fourier coefficients a2

and a4. With numerical precision of ∆ = 0.001 about 68% LCs are unique (see
Tab. 2).
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Figure 8. The level of degeneracy in the a2 − a4 plane for the Fourier space bin size

∆ = 0.005.

The number of non-degenerated (i.e., unique) LCs increases with increasing
numerical precision of Fourier coefficients. In Fig. 10 only LCs with small am-
plitudes (resulting from partial eclipses) Atrue ≤ 0.25 have degeneracy D > 10.

The main disadvantage of this approach is that we do not know anything
about the distance d (Eq. 5) of two solutions, i.e., sets of geometric elements
[q, f, i] which occupy the same interval of Fourier coefficients. This means that
the uncertainty of any solution cannot be differentiated from the ambiguity of
the solution. The reliability of mass-ratio determination is thus expressed only
as a range of all mass ratios which correspond to the same bin in the space of
Fourier coefficients.

4.3. Third light

The third light is additive and constant for all orbital phases. Its presence re-
duces both the photometric amplitude of LC (Eq. 3) and proportionally Fourier
coefficients a1 to a10, but increases a0.
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plane of a2 − a4 for the bin size ∆ = 0.001.

To analyze the effects of the third light we simply recalculated the Fourier
coefficients corresponding to the originally synthetised LCs. It can be easily
shown that the coefficients transform as:

a0 → a0 + l3
1 + l3

an → an
1 + l3

, n ∈ {1, . . . , 10} .
(6)

For the uniqueness analysis we assumed the bin size ∆ = 0.001 and consid-
ered six levels of the third light: l3 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

The range of mass ratios for all considered values of [q, f, i, l3] in the plane
of a2−a4 is shown in Fig. 12. The areas with uncertainty δq < 0.025 are limited
to higher values of f (lower a2 bin numbers), inclinations i > 60◦ and to mass
ratios q > 0.3.

Areas around high bin numbers of both coefficients show the highest uncer-
tainty of mass-ratio determination, with the maximum value of δqmax = 0.45.
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Figure 10. Dependence of the number of degenerated LCs on the amplitude Atrue for

the bin size ∆ = 0.001 in amplitude.

The uniqueness of the LC solution is good for total eclipses. If there is a sus-
picion for the third light, one should adopt the spectroscopic mass ratio qsp

instead, or adopt a spectroscopic estimate of the third light (e.g., in Pribulla et
al., 2006).

5. Conclusion and discussion

We investigated the uniqueness of the solution of an LC of an eclipsing contact
binary star in terms of determining the photometric mass ratio qph by modeling
of synthetic LCs. We have calculated tables of Fourier coefficients a0 − a10

for 11895 combinations of geometric elements [q, f, i]. By comparing Fourier
coefficients corresponding to an observed LC with this database, one can quickly
estimate the mass ratio q0, the orbital inclination i0 and the fill-out factor f0
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Figure 11. Change of the size and shape of areas of solutions of LCs generated for

the fixed value of f = 0 and various values l3 of the third light.

without detailed modeling7. We have confirmed that the degeneracy of a solution
is inversely proportional to the amplitude of an LC and proportional to the value
of the fill-out factor f .

Although the model LCs were synthetised for a single and fixed mean tem-
perature of the primary component, this has an impact only on the depths of
minima, which corresponds to the Fourier coefficient a1. Because the trigonomet-
ric polynomials are orthogonal, the Fourier coefficients of higher orders are not
affected by arbitrarily selected temperatures. For correct assessment of unique-
ness of the solution of an observed LC the coefficient a1 should be omitted from
Eq. 5, or another parameter should be added (Csák et al., 2000).

We found that in the sub-space of geometrical elements [q, f, i] there is an
area of the local minimum of the difference d between the true LC solution and

7A simple program to quickly determine geometric elements [q, f, i] and Fourier coeffi-
cients for an observed LC and check the uniqueness of the solution is available on-line at
http://www.ta3.sk/~lhambalek/download/unique.zip
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all other solutions. The area is continuous and no other local minima have been
found. The size of this area is larger for partial eclipses. With an increasing
amplitude of the LC, the range of possible values of the mass ratio decreases,
while the range of possible values of inclination increases. For partial eclipses
an error to be expected without the third light is δqmax = 0.25. In the case of
an unknown third light the error can be as high as δqmax = 0.45.

The strong correlation of the third light with geometrical elements could
be circumvented by obtaining the LCs in more passbands in the case that the
spectral type of the third body is substantially different from the spectral type
of the eclipsing binary. In that case, the amount of the third light varies greatly
between individual passbands. In the present paper we discussed only monochro-
matic dependence of geometric elements and the presence of the third light on
the possibility to infer the mass ratio from a photometric LC.

The next step would be to extend this work by inclusion of semi-detached
and detached binaries. Using high-order of a trigonometric polynomial would
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Table 2. An overview of occurrence of degeneracy D of all 11895 LC solutions for

various bin sizes of ∆.

∆ = 0.01 ∆ = 0.005 ∆ = 0.001
D count D count D count
0 134 0 907 0 8120
1 91 1 458 1 955
2 69 2 301 2 255
3-10 319 3-5 395 3 112
11-30 155 6-15 242 4 48
31-50 22 16-25 44 5 26
51-75 15 26-35 11 6 14
76-100 2 36-50 11 7 6
101-125 7 51-65 5 8 5
126-175 5 66-80 3 9 4
176-225 4 81-100 2 10 1
226-275 4 101-125 7 11 0
276-325 1 126-150 5 12 0
326-366 2 151-187 6 13 1

Table 3. An overview of occurrence of degeneracy D for 59475 combinations of

[q, f, i, l3] for various bin sizes ∆. The case of l3 = 0 was not considered.

∆ = 0.01 ∆ = 0.005 ∆ = 0.001
D count D count D count
0 79 0 779 0 27063
1 52 1 528 1 4711
2 39 2 399 2 1659
3-10 220 3-5 673 3 816
11-20 123 6-10 508 4 475
21-50 153 11-25 524 5 291
51-100 81 26-50 179 6-10 541
101-200 63 51-100 80 11-15 152
201-400 28 101-200 47 16-20 64
401-600 14 201-300 23 21-25 51
601-1000 8 301-500 5 26-30 23
1001-1400 2 501-700 4 31-35 15
1401-1800 2 701-900 4 36-40 9
1801-2588 4 901-1167 7 41-46 4

be necessary to represent LCs of given types of binary systems. Moreover, Fig. 7
indicates that a finer step in the fill-out factor is needed.
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