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Deep-learning classification of eclipsing binaries
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Abstract. We present a deep-learning model for the classification of eclipsing
binaries. Our classifier provides a tool for the categorization of light curves of
eclipsing binaries into four classes: detached systems with and without spots,
and over-contact systems with and without spots. The classifier was trained on
200 000 synthetic light curves created using ELISa code. We randomly selected
100 light curves from the GAIA catalogue, which were fitted for evaluation
purposes, and their morphologies were determined. We tested several classifiers
and found that the best-performing classifier combined a Long Short-Term
Memory (LSTM) layer and two one-dimensional convolutional neural networks.
The precision from the evaluation set was 97% compared with the predicted
precision of 94 % for the validation of synthetic data. Our classifier is more
likely to successfully process data from subsequent large observational surveys.
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1. Introduction

Eclipsing binaries (EBs) are a well-known group of variable stars in which light
variations are caused by the mutual obscuration of stars with respect to the
observer. It produces typical light curves where valuable information about the
physical properties of the stars within the system is coded, like the sizes and
shapes of the stars, mass ratio, relative temperatures, and the inclination of the
orbital plane. Moreover, the light curves of many EBs show irregularities caused
by spot(s) on one or both components (Hilditch, 2001; Prša, 2018).

EBs can be classified in two different ways. The first is the morphological
division into three classes (Algol, β Lyr, and W UMa) based only on the shape
of the light curve. The second is based on the amount of Roche lobe filling in
the binary systems (Wilson, 1994; Kallrath & Milone, 2009), where three classes
are listed (detached, semi-detached, and over-contact).
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From a geometrical point of view, the semi-detached system is, in principle,
detached; both components can be described by a convex surface (Čokina et al.,
2021). Moreover, to model such a system, we must know two potentials (Kallrath
& Milone, 2009). Therefore, we divided the EBs for machine-learning purposes
into four groups: 0 – over-contact without spots, 1 – over-contact with spots, 2
– detached without spots and 3 – detached with spots.

This approach will allow us to classify possibly all EBs, which were found
in large surveys e.g. GAIA or KEPLER will also be found in prepared surveys,
such as Vera Rubin (LSST). Sorting into these groups will enable the use of
different approaches to determine other parameters (physical and geometrical)
of EBs using machine-learning approaches.

Figure 1. Examples of synthetic (blue) and GAIA (red) light curves from different

groups.

2. Training and evaluation dataset

Deep-learning classification requires a large labelled training dataset, where all
groups of objects have equal representations. In the analysis of EBs, we can
create such datasets using software packages dedicated to EB modelling. In our
study, the training dataset was created using the ELISa code (Čokina et al.,
2021). For each group, we simulated 50 000 light curves created from the pa-
rameters covering a wide range of physically correct values for a specific group.
Each light curve was represented by 100 data points of normalized flux phased
to < 0, 1 > interval.

To evaluate our model, we randomly selected 100 EB light curves published
in the GAIA-DR3 catalogue (Mowlavi et al., 2023). All these light curves were
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fitted using the ELISa code to determine the basic parameters of the systems and
eventually spot(s) on the components, as well as to determine their morphology.
Examples of synthetic and GAIA light curves are shown in Fig. 1.

3. Deep-learning model and its performance

We tested several classification models and found that the best performance
was achieved by combining two one-dimensional convolutional neural networks
(CNN) and a Long Short-Term Memory (LSTM) layer. We used Adam optimizer
and sparse categorical cross-entropy loss function (Chollet et al., 2015).

The training of our model was performed for 10 epochs, during which the
loss and accuracy were determined. We randomly selected 20% of the training
light curves for the validation dataset. Using this, the predicted precision was
calculated and a confusion matrix was created. The predicted precision of the
validation data is 94%. A detailed inspection of the confusion matrix (Fig. 2)
reveals that our model misclassified (on the level of approximately 10%) the
spotted light curves for both the detached and contact systems. This is probably
because small spots cause only small changes in the light curve, and the model
is unable to recognize the changes. To solve this issue, a new, more complicated
model should be trained on a much larger dataset with a better coverage of spot
parameters.

We used an evaluation dataset with GAIA light curves to test our model
using real data. The precision of the model is 97%. One overcontact system
without spots was misclassified as a detached system with spots and two de-
tached systems without spots were misclassified as detached systems with spots.
This is probably because of the relatively poor data quality of the GAIA light
curves (outliers and noise).

Figure 2. Confusion matrix (left) and performance of the model depending on epoch

(right).
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To achieve better results, it is necessary to process observational data better
and train the model on more diverse synthetic data (wider range of system pa-
rameters and spots, different levels of noise, and/or adding outliers to synthetic
data). Nevertheless, our classifier is now more likely to be applicable to GAIA
data and promising for data analysis from large observational surveys, such as
the Vera Rubin Telescope (LSST).
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