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Abstract. The Rossi X-ray timing explorer, which operated from 1995 to
2012, has provided a large amount of NS data. Timing analysis of the X-ray
flux in more than a dozen NS systems reveals remarkable correlations between
frequencies of two characteristic peaks present in the high-frequency part of
the power-density spectra. We discuss a simple analytic relation that well re-
produces these correlations. We outline a possible physical interpretation of
the relation’s parameters and explore the impact of the obtained results in a
broader context.
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1. Introduction

Low-mass X-ray binaries (LMXBs) provide a unique opportunity to probe the
effects associated with strong gravity in both black hole (BH) and neutron star
(NS) systems (van der Klis, 2006). In the case of NS systems they may serve as
a good tool for exploration of the supra-dense matter (Lewin et al., 1997).

The Proportional Counter Array aboard the Rossi X-ray timing explorer
(PCA, RXTE Bradt et al., 1993; Jahoda et al., 1996), which operated from 1995
to 2012, has provided observations of NS sources that reveal the existence of
two characteristic peaks present in the high-frequency part of the power-density
spectra (twin-peak QPOs). In Figure 1a we illustrate correlations between twin-
peak QPO frequencies in terms of the upper and lower QPO frequency, νU and
νL, for a group of 14 sources including 8 atoll sources, 5 Z sources, and one mili-
second X-ray pulsar. These 14 sources are listed in Table 1. At present there
is no commonly accepted model that could explain the observed correlations.
Nevertheless, based on various strong arguments, it is usually expected that the
twin-peak QPOs are related to orbital motion in the vicinity of NSs. Miscella-
neous concepts have been proposed to explain the observed phenomenon (Alpar
& Shaham, 1985; Lamb et al., 1985; Miller et al., 1998; Psaltis et al., 1999; Stella
& Vietri, 2001; Wagoner et al., 2001; Kluźniak & Abramowicz, 2001; Abramow-
icz & Kluźniak, 2001; Kato, 2001; Titarchuk & Wood, 2002; Abramowicz et al.,
2003; Rezzolla et al., 2003; Kluźniak et al., 2004; Zhang, 2004; Pétri, 2005;
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Bursa, 2005; Čadež et al., 2008; Wang et al., 2008; Mukhopadhyay, 2009; Ba-
chetti et al., 2010; Dönmez et al., 2011; Stuchĺık et al., 2013; Stuchĺık & Kološ,
2014; Huang et al., 2016; Le et al., 2016; Germanà, 2017, and several others).

2. Orbital models

Various attempts to model the individual observed correlations with simple
orbital models assuming test particle motion or oscillating pressure-supported
fluid structures in the slender torus limit approximation have been rather unsuc-
cessful (see, e.g., Lin et al., 2011; Török et al., 2010, 2012, 2016b, and references
therein). In Figure 1a we include an example of correlation predicted by a par-
ticular geodesic model, the so-called relativistic precession model (Morsink &
Stella, 1999; Stella & Vietri, 1998, 1999, in the following RP model). This corre-
lation is compared to the prediction of a non-geodesic model recently proposed
by Török et al. (2016a) to which we in the following refer as the CT (Cusp
Torus) model. Both curves in the Figure are drawn for a non-rotating NS with
gravitational mass M = 1.7M�.

2.1. The RP model

The RP model in its usual form incorporates the assumption that the observed
rapid X-ray variability originates in the orbital motion of hot inhomogeneities
orbiting in the innermost parts of the accretion disc. Within this framework the
frequencies of the two observed QPOs are related to the Keplerian frequency
νK and the relativistic precession frequency νP of slightly perturbed circular
geodesic motion that occurs at an arbitrary orbital radius r,

νU(r) = νK(r), νL(r) = νP (r) . (1)

The precession frequency equals to a difference between the Keplerian and the
radial epicyclic frequency, νP (r) = νK(r)− νr(r).

It has been shown that relation (1) roughly matches the data of NS sources
(e.g., Stella & Vietri, 1998, 1999; Belloni et al., 2007; Lin et al., 2011; Török
et al., 2012, 2016b). It is however questionable whether the local motion of
an individual spot can be responsible for the high amplitudes and coherence
times of the observed QPOs (e.g., Barret et al., 2005a; Méndez, 2006; Barret
& Vaughan, 2012).

2.2. The CT model

The CT model explored recently by Török et al. (2016a) deals with global modes
of accreted fluid motion in an oscillating torus (Rezzolla et al., 2003; Abramow-
icz et al., 2006; Blaes et al., 2006; Šrámková et al., 2007; Ingram & Done, 2010;
Fragile et al., 2016; Mishra et al., 2017; Parthasarathy et al., 2017; de Avellar
et al., 2017). The torus is assumed to form a cusp by filling up the so-called
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critical equipotential volume. The upper kilohertz QPO frequency is assigned
to the Keplerian frequency of the fluid at the centre of the torus where both the
fluid pressure and the density peak, and from which most of the torus radiation
emerges. The lower kilohertz QPO frequency is assigned to the frequency of
a non-axisymmetric m = −1 radial epicyclic mode, νr,−1. It is expected that
the torus at all times keeps its maximal possible size filling the ‘Roche-like’
lobe, and that its radial oscillations modulate the boundary layer accretion flow
(Paczynski, 1987; Horák, 2005; Abramowicz et al., 2007; Parthasarathy et al.,
2017).

The QPO frequencies predicted by the CT model are functions of the torus
centre location r0,

νU ≡ νK(r0), νL ≡ νr,−1(r0) . (2)

Rather long analytic formulae that define νr,−1 can be found in Straub &
Šrámková (2009). Török et al. (2016a) numerically calculated the νL(νU) cor-
relation following from relation (2). Assuming this correlation, they obtained a
good match of the data in the case of the atoll source 4U 1636-53 for NS mass
of M = 1.69M� (see Figure 1b for illustration).

3. Simple analytical formula

In Török et al. (2017a) we suggested that the νL(νU) frequency relations can be
well described by the following formula

νL = νU

(
1− B

√
1− (νU/ν0)

2/3

)
, (3)

where ν0 equals the Keplerian orbital frequency at the innermost stable circular
orbit around a non-rotating NS with gravitational mass M0. This frequency can
be expressed in the units of Hz as (e.g., Kluzniak & Wagoner, 1985; Kluzniak
et al., 1990),

ν0 = νISCO =
1

63/2

c3

2πG

1

M
= 2198

M�

M
= 2198

1

M
. (4)

For B = 1, relation (3) merges with the frequency relation implied by the
RP model while the CT model prediction is well approximated by relation (3)
for B = 0.8. We illustrate this property of relation (3) in Figure 1b.

4. Data matching - main results

For 9 sources, namely 4U 1608-52, 4U 1636-53, 4U 1735-44, 4U 1915-05, IGR
J17191-2821, GX 17+2, Sco X-1, Cir X-1 and XTE J1807.4-294 we find good
agreement between the CT model and data. In all these sources the CT model
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a) b)

Figure 1. Correlations between the frequencies of twin-peak QPOs. a) The data of

14 sources and examples of the expected frequency relations. Detailed information on

the individual sources along with the appropriate references is given in Table 1. b)

The data of the atoll source 4U 1636-53 and their best fits. For the sake of clarity,

the data-set which corresponds to the individual continuous observations is compared

to the data-set associated with the common processing of all observations (see Török

et al., 2016a). In both panels the expected frequency relations are drawn for a non-ro-

tating NS.

matches the observed trend better than is done by the RP model (see Figure 2).
For the other 5 sources, namely 4U 1728-34, 4U 0614+09, 4U 1820-30, GX
340+0 and GX 5-1, it is not possible to match the data due to the CT model
limitations discussed by Török et al. (2016a).

Relation (3) well describes the data in each of the 14 sources (see Table 1). In
some cases one does not achieve χ2 ≈ 1d.o.f, but no clear deviation of data from
the expected trend is found. This can be seen from a direct comparison between
the expected curves and data, which is for each source included in Török et al.
(2017a,b) where we present detailed results.

5. Consideration of models of rotating NSs

In the series of works (Török et al., 2010, 2012, 2016b) the authors explored
the implications of several orbital QPO models. They found that the estimation
of NS parameters based on these models leads to the effective degeneracy of
these parameters. For a given model, each combination of NS mass M , angular
momentum j and quadrupole moment q corresponds to a certain value of a
single generalized parameter, e.g., non-rotating NS mass. Indeed, Török et al.
(2016a) noticed that the NS mass implied by the CT model for the atoll source
4U 1636-53 can be expressed as

M = M0[1 + 0.7(j + j2)], M0 = 1.69±0.01M� . (5)



480 G. Török, K. Goluchová and E. Šrámková
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Figure 2. A comparison between the best fits obtained assuming the CT and RP

models for data of the individual sources. The best fits for the atoll source 4U 1636-53

are shown in Figure 1b.

5.1. Neutron star spin, radius and equation of state

There is good evidence on the NS spin frequency of 4U 1636–53 based on the
X-ray burst measurements (see the reference in Wang et al., 2017). The con-
sideration of the X-ray burst models implies the NS spin to take the value of
νS

.
= 580 Hz. The CT model predictions can therefore be compared to the ex-

pectations given by models of rotating NSs.

Figure 3a (after Török et al., 2016a) displays several mass-angular momen-
tum relations expected from the models of rotating NSs for the spin of 580 Hz.
Inspecting this Figure one can see that there is an overlap between the rela-
tions given by the models of rotating NSs and the relation inferred from the CT
model. The required NS mass is M(580Hz) ≈ 2M�.

Considering the above result, one can expect that similar consideration
should also be valid for the other sources listed in Table 1. This is justified in
Figure 3b, where we explore the CT model predictions for another atoll source,
4U 1608-52. Table 1 indicates that M(B = 0.8) = 1.74. The NS spin inferred
from the X-ray burst measurements takes the value of νS

.
= 610 Hz (see refer-

ences in Wang et al., 2017). Analyzing Figure 3b one can see that the relation

M = M0[1 + 0.6(j + j2)], M0 = 1.74±0.01M� (6)

describes the CT model model prediction and overlaps with the relations given
by the models of rotating NSs around M(610Hz) ≈ 2.1M�.
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a) b)

Figure 3. The mass-angular momentum contours obtained from the fitting of dat-

apoints using the CT model vs. the mass-angular momentum relations predicted by

models of rotating NSs. These are drawn for several NS EoS and the values of spin

inferred from the X-ray burst measurements. For the models of rotating NSs we adopt

the approach of Urbanec et al. (2013). The assumed EoS are as follows. Gle - Glenden-

ning (1985); APR - Akmal et al. (1998); Gan - Gandolfi et al. (2010); other - Rikovska

Stone et al. (2003); Urbanec et al. (2010). For the QPO model, the σ-confidence levels

are calculated in accordance with the method used in Török et al. (2016a,b). a) The

atoll source 4U 1636-53. b) The atoll source 4U 1608-52. In both panels the emphasized

spot indicates where the QPO model and the EoS relations overlap.

6. Conclusions

The CT model as well as relation (3) for B = 0.8 well reproduce the data of 9
sources. Assuming B as a free parameter, we obtain good fits for each of the 14
considered sources. We suggest that larger deviations from the case of B = 0.8
are caused by further non-geodesic effects acting on the torus formation. These
can be induced by the influence of magnetic field.

The particular consideration of the CT model agrees with the general inter-
pretation, in which the M parameter represents the main parameter reflecting
the spacetime geometry given by the NS mass and spin, while the B parameter
reflects the additional stable factors. Further determination of NS mass and spin
is possible when implications of relation (3) are confronted with the results of
NS modeling based on NS spin measurements. In the case of the CT model we
have already obtained promising results in this research direction.
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Table 1. The results of data matching for relation (3) assuming B = 0.8 and B as a

free parameter. The goodness of fits is formally characterized by the χ2 values. The

uncertainties displayed here correspond to standard errors.

Source Name M(0.8) χ2

d.o.f. M(B) B χ2
M(B)

d.o.f. Data-

No./Type points

1/A 4U 1608-52 1.80±0.01 1.6 1.79±0.04 0.79±0.03 1.7 12
2/A 4U 1636-53 1.70±0.01 2.0 1.70±0.01 0.8±0.01 2.1 22
3/A 4U 1735-44 1.69±0.01 2.1 1.48±0.10 0.61±0.06 1.0 8
4/A 4U 1915-05 1.58±0.03 0.8 1.65±0.03 0.82±0.01 0.2 5
5/A IGR J17191 1.58±0.02 0.6 1.63±0.20 0.85±0.2 0.8 4
6/Z GX 17+2 1.89±0.02 1.2 1.77±0.07 0.72±0.04 0.8 10
7/Z Sco X-1 1.82±0.01 1.0 1.81±0.01 0.8±0.01 1.0 39
8/Z Cir X-1 0.74±0.10 1.2 1.42±0.5 0.89±0.06 1.1 11
9/P XTE J1807.4 2.61±0.11 0.8 2.85±0.25 0.86±0.07 0.8 7

10/A 4U 1728-34 1.57±0.01 3.2 1.35±0.12 0.65±0.06 2.5 15
11/A 4U 0614+09 1.71±0.02 5.1 1.39±0.06 0.62±0.02 1.1 13
12/A 4U 1820-30 1.81±0.01 9.3 1.53±0.07 0.58±0.03 3.2 23

13/Z GX 340+0 1.62±0.08 4.2 2.23±0.10 1.10±0.08 1.6 12
14/Z GX 5-1 1.65±0.10 16.7 2.31±0.04 1.11±0.02 1.5 21

Source type: A - Atoll, Z - Z, P - Pulsar

References: (1)–(3), (10) – (12) - Barret et al. (2005b,c, 2006), (4) - Boirin et al. (2000), (5) -

Altamirano et al. (2010), (6) - Homan et al. (2002), (7) - van der Klis et al. (1997), (8) -

Boutloukos et al. (2006), (9) - Linares et al. (2005), (13) - Jonker et al. (2000), (14) - Jonker

et al. (2002).

California in Santa Barbara, and to express our thanks to concierges of Mlýnská ho-
tel in Uherské Hradǐstě, Czech Republic for their participation in organizing frequent
workshops of Silesian University and Astronomical Institute of the Czech Academy of
Sciences.
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Barret, D., Kluźniak, W., Olive, J. F., Paltani, S., & Skinner, G. K., On the high
coherence of kHz quasi-periodic oscillations. 2005a, Mon. Not. R. Astron. Soc., 357,
1288, DOI: 10.1111/j.1365-2966.2005.08734.x

Barret, D., Olive, J.-F., & Miller, M. C., An abrupt drop in the coherence of the lower
kHz quasi-periodic oscillations in 4U 1636-536. 2005b, MNRAS, 361, 855, DOI:
10.1111/j.1365-2966.2005.09214.x

Barret, D., Olive, J.-F., & Miller, M. C., Drop of coherence of the lower kilo-Hz QPO
in neutron stars: Is there a link with the innermost stable circular orbit? 2005c,
Astronomische Nachrichten, 326, 808, DOI: 10.1002/asna.200510417

Barret, D., Olive, J.-F., & Miller, M. C., The coherence of kilohertz quasi-periodic
oscillations in the X-rays from accreting neutron stars. 2006, MNRAS, 370, 1140,
DOI: 10.1111/j.1365-2966.2006.10571.x

Barret, D. & Vaughan, S., Maximum Likelihood Fitting of X-Ray Power Density
Spectra: Application to High-frequency Quasi-periodic Oscillations from the Neu-
tron Star X-Ray Binary 4U1608-522. 2012, AJ, 746, 131, DOI: 10.1088/0004-
637X/746/2/131

Belloni, T., Méndez, M., & Homan, J., On the kHz QPO frequency correlations in
bright neutron star X-ray binaries. 2007, Mon. Not. R. Astron. Soc., 376, 1133,
DOI: 10.1111/j.1365-2966.2007.11486.x

Blaes, O. M., Arras, P., & Fragile, P. C., Oscillation modes of relativistic slender tori.
2006, MNRAS, 369, 1235, DOI: 10.1111/j.1365-2966.2006.10370.x

Boirin, L., Barret, D., Olive, J. F., Bloser, P. F., & Grindlay, J. E., Low and high fre-
quency quasi-periodic oscillations in 4U1915-05. 2000, Astronomy and Astrophysics,
361, 121

Boutloukos, S., van der Klis, M., Altamirano, D., et al., Discovery of Twin kHz
QPOs in the Peculiar X-Ray Binary Circinus X-1. 2006, APJ, 653, 1435, DOI:
10.1086/508934

Bradt, H. V., Rothschild, R. E., & Swank, J. H., X-ray timing explorer mission. 1993,
ApJ Supp., 97, 355



484 G. Török, K. Goluchová and E. Šrámková

Bursa, M., High-frequency QPOs in GRO J1655-40: Constraints on resonance models
by spectral fits. 2005, in RAGtime 6/7: Workshops on black holes and neutron stars,
ed. S. Hled́ık & Z. Stuchĺık, 39–45

de Avellar, M. G., Porth, O., Younsi, Z., & Rezzolla, L., The kilo Hertz quasi-periodic
oscillations in neutron star low-mass X-ray binaries as tori oscillation modes. I. 2017,
ArXiv e-prints [arXiv: 1709.07706]

Dönmez, O., Zanotti, O., & Rezzolla, L., On the development of quasi-periodic oscil-
lations in Bondi-Hoyle accretion flows. 2011, Mon. Not. R. Astron. Soc., 412, 1659,
DOI: 10.1111/j.1365-2966.2010.18003.x

Fragile, P. C., Straub, O., & Blaes, O., High-frequency and type-C QPOs from os-
cillating, precessing hot, thick flow. 2016, MNRAS, 461, 1356, DOI: 10.1093/mn-
ras/stw1428

Gandolfi, S., Illarionov, A. Y., Fantoni, S., et al., Microscopic calculation of the equa-
tion of state of nuclear matter and neutron star structure. 2010, MNRAS, 404, L35,
DOI: 10.1111/j.1745-3933.2010.00829.x
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