Photometric investigation of the dwarf nova Pegasi 2010 – a new WZ Sge-type object

D. Chochol¹, N.A. Katysheva², S.Yu. Shugarov^{1,2}, P.O. Zemko³ and M.V. Andreev⁴

¹ Astronomical Institute of the Slovak Academy of Sciences 05960 Tatranská Lomnica, The Slovak Republic

² Sternberg State Astronomical Institute, Lomonosov Moscow State

University, Universitetskij Prosp. 13, 119991 Moscow, Russia

³ Physical department of Lomonosov Moscow State University, Vorobjovy Gory, 119991 Moscow, Russia

⁴ Terskol Branch of the Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St., 119017 Moscow, Russia

Received: March 14, 2012; Accepted: April 5, 2012

Abstract. We present our $UBVR_CI_C$ CCD photometry of a new dwarf nova OT J213806.6+261957 in Pegasus, discovered during its superoutburst on May 6, 2010 and classified as a WZ Sge-type star. In the term May 15 – November 27, 2010, we obtained more than 10 000 CCD observations of the nova. Two-colour diagrams together with the superoutburst evolutionary tracks of the nova are presented. The analysis of our data revealed the presence of ordinary superhumps with the mean period of $0.^{d}055106$ and late superhumps with the period of $0.^{d}05490$. We calculated the orbital period of the dwarf nova Pegasi 2010 to be $0.^{d}0542\pm0.005$ and estimated the mass of the red dwarf component in the binary as $0.09\pm0.01 M_{\odot}$. The period change of superhumps of the dwarf nova Pegasi 2010 is in agreement with other WZ Sge-type stars. The evolution of superhumps profiles is discussed. The superoutburst of the dwarf nova Pegasi 2010 finished at the end of September 2010. In October and November 2010 night-to-night brightness variations as well as a flickering on a time scale of minutes were detected.

Key words: dwarf novae – photometry, superoutburst, superhumps

1. Introduction

Dwarf Novae (DNe) are a subclass of cataclysmic variable stars – semidetached binaries consisting of a red dwarf, transferring matter to a white dwarf. Variability of DNe is caused by the orbital motion of the components and quasi-periodic outbursts, resulting from instabilities in an accretion disk surrounding a white dwarf. According to the form and duration of the outburst, DNe are divided into several types, named after their typical object. In general, outbursts last a few days (in U Gem-type and SS Cyg-type stars) but some DNe (SU UMa-type stars) show less frequent superoutbursts, lasting for several weeks. Superoutbursts have a distinguished peculiarity: a hump-shaped modulation that appears shortly after maximum and maintains until the beginning of a quiescence stage. The humps show longer periods in comparison with orbital ones, and evolve during the brightness decline.

The WZ Sge-type DNe are a subgroup of SU UMa stars with a long (several years or even decades) recurrence time of superoutbursts. The superhumps of WZ Sge-type stars evolve from "early superhumps" with a double-humped profile near the brightness maximum and the period extremely close to the orbital one, through "ordinary superhumps" with a single-humped profile and the period of a few percent longer than the orbital one, to "late superhumps" that appear several days after the rapid decline from the plateau of a superoutburst and may continue for several hundred cycles after the end of the superoutburst.

The early superhumps are a unique feature of WZ Sge-type stars. Osaki and Meyer (2002) suggested that a double peaked profile of early superhumps is manifestation of the tidal 2:1 resonance in accretion disks of binary systems with extremely low mass ratios. Early superhumps can be explained by a two-armed spiral pattern of tidal dissipation generated by the 2:1 resonance, first proposed by Lin and Papaloizou (1979). The ordinary superhumps, with a single-humped profile, can be explained by the thermal tidal instability model of an accretion disk (Osaki, 1989; Whitehurst, 1988). The presence of the tidal 3:1 resonance in the disk (with the radius smaller than the 2:1 resonance radius) results in the formation of an eccentric outer ring undergoing apsidal precession with a period considerably longer than the orbital one. The beating of the orbital and precessional periods cause periodic variations, identified as superhumps. This model is supported by numerical simulations (Kaigorodov et al., 2006; Smith et al., 2007). The late superhumps are proposed to originate in the precessing eccentric disk near the tidal truncation. The eccentric disk slowly expands during the decline of the superoutburst and finally reaches the tidal truncation, where the period is stabilized (Kato et al., 2008).

Dwarf nova Pegasi 2010 (DNP2010 = J2138+26) was discovered as a bright optical transient by Yi (Yamaoka, 2010a) and independently by Kaneko (Nakano, 2010). The first measurements were presented by Itagaki (2010) and Camilleri (2010). Yi detected the object of ~ 10.8 mag on two images taken on May 6.77 with a Canon 5D digital camera and confirmed it on May 7.76, when it reached 8.4 mag. The confirmation image suggests that the brightened object is positionally coincident with the GSC star 2197:886. Its catalogued position in GSC version 2.3 is R.A. = $21^h 38^m 06^s.571$, Decl. = $+26^\circ 19'57.''33$ (equinox 2000.0), with photographic red and blue magnitudes F = 13.88 and j = 14.57, respectively. Yamaoka (2010b) noted that the Digitized Sky Survey image of GSC 2197:886 is elongated toward the north-south, indicating that the object is a double/multiple star. There is a bright X-ray source (1RXS J213807.1+261958) near this position. Henden (2010) found that Palomar Observatory Sky Survey (POSS) plates show a close pair of objects at the location of the outbursted

Figure 1. Positions of the DNP2010 (var) and comparison stars. The size of the CCD frame is 15x20 arcminutes (top). Position of the star GSC 2197:886 ("S") and DNP2010 in POSS plates and our CCD image (bottom).

variable: one is essentially stationary, while the other has a relatively high proper motion. On the POSS-I plates, the southwest component of the 3''-separated double is obviously blue, while on the POSS-II plates, it has moved east-northeast by about 3'' and is now about 1'' southeast of the stationary northeast component. The moving object is the outbursting object – a cataclysmic variable with an amplitude of about 6 mag.

The dates of expositions of the POSS-I and POSS-II plates were July 11, 1951 and July 21, 1990, respectively. We obtained a CCD image, where both objects were well resolved using the 0.6m telescope at the Crimean Laboratory of the Sternberg Astronomical Institute on December 3, 2011. We measured the position of the DNP2010 relatively to GSC 2197:886 in a POSS-I plate and our CCD image, taken 60.4 years later (see Fig. 1, bottom.) Due to the fact that the proper motion of GSC 2197:886 is given in the Catalog of positions and proper motions (Roeser et al., 2010) as 14.2 mas/year in α and 36.7 mas/yr in δ , it is easy to estimate the proper motion of the DNP2010 as ~ 60 mas/year in α and ~ 50 mas/yr in δ .

Table 1. The magnitudes and positions of the comparison stars "1 - 7" shown in Fig. 1. The star "8" lies outside the CCD field. Magnitudes of the stars "1, 3, 4, 5, 6, 7, 8" were found relatively to the star "2". "S" is a close optical component of the DNP2010. Its magnitudes were found out during our observations.

star	Name USNO	U	В	V	R_C	I_C	α_{2000}
	Other name						δ_{2000}
1	A2.0 1125-18630159	10.61	9.80	8.83	8.20	7.72	$21^h \ 39^m 03.^s 467$
	BD + 25 4581						$26^{\circ} \ 17' \ 57.''92$
2	B1.0 1162-0553070	10.70	10.62	10.03	9.65	9.31	$21^h \ 38^m 23.^s 052$
	BD + 25 4580						$26^{\circ} \ 14' \ \ 02.''432$
3	A2.0 1125-18612647	14.30	13.94	13.12	12.68	12.28	$21^h \ 38^m 08.^s 981$
	GSC 2197-01038						$26^{\circ} \ 19' \ 09.''52$
4	A2.0 1125-18613561	15.96	14.92	13.37	12.30	11.08	$21^h \ 38^m 11.^s 914$
	$GSC \ 2197-01006$						$26^{\circ} \ 19' \ 48.''44$
5	A2.0 1125-18614015	13.31	13.37	12.94	12.63	12.35	$21^h \ 38^m 13.^s 107$
	GSC 2197-00842						$26^{\circ} \ 20' \ \ 05.''18$
6	A2.0 1125-18616815	12.64	12.51	11.84	11.47	11.10	$21^h \ 38^m 21.^s 982$
	GSC 2197-00808						$26^{\circ} \ 17' \ 37.''77$
7	B1.0 1163-0561305	14.82	14.40	13.43	12.82	12.26	$21^h \ 38^m 13.^s 737$
	GSC 2197-00946						$26^{\circ} \ 38' \ \ 03.''01$
8	A2.0 1125-18600891	12.35	11.29	10.10	9.52	8.90	$21^h \ 37^m 31.^s 998$
	GSC 2196-01869						$26^{\circ} \ 21' \ 50.''82$
\mathbf{S}	A2.0 1125-18611877	15.69	15.72	15.23	14.76	14.30	$21^h \ 38^m 06.^s 471$
	$GSC \ 2197-00886$						$26^{\circ} \ 19' \ 57.''33$

Arai (2010) reported that the optical spectrogram (resolution 500) of the variable, obtained using the 1.3m ARAKI telescope at the Koyama Astronomical Observatory on May 8.66 showed a blue continuum and a weak H α emission line (EW about 4 Å), suggesting that the object would be classified as a dwarf nova. Graham et al. (2010) reported that a spectrum (range λ 3900–7030 Å, resolution 3 Å) of this variable, obtained on May 8.47 UT with the 1.82m Plaskett Telescope at the Dominion Astrophysical Observatory, B.C., Canada, showed strong H α and H β in emission (FWHM 800 km s⁻¹), as well as He II (λ 4686 Å) and a broad emission feature centered at λ 4650 Å. All members of the Balmer series exhibit shell-like profiles with both red and blue absorption components. The dwarf nova nature and its WZ Sge classification was proposed by Tovmassian et al. (2010) from the 2.5 hours spectrophotometry of the object obtained with the 2.1m UNAM telescope in Mexico.

Gänsicke (2010) reported that the object was detected in the GALEX All-Sky Survey in quiescence (JD 2453956) at $m(fuv)=16.15\pm0.03$, $F(fuv)=1257.58\pm33.16 \ \mu$ Jy. The flat ultraviolet spectrum of DNP2010 observed by GALEX is compatible with a white dwarf temperature of ~ 15000 K. Assuming a 0.6 M_{\odot} white dwarf mass, the GALEX fluxes imply a distance of 70 pc. It appears that the object is a WZ Sge-type star.

Hudec (2010) found on the Sonneberg Observatory Archival Sky Patrol Plates another superoutburst of the object, peaked on November 30, 1942 at $B = 9.8\pm0.5$ mag. He estimated the duration of this event to be between 12 and 46 days and superoutbursts' recurrence time about 67 years. The detection of another superoutburst confirms that the DNP2010 is a WZ Sge-type object. The database search of outbursts in Plate archive of the Sternberg Astronomical Institute gave a negative result.

The light curve and O - C diagram of DNP2010 were presented by Kato et al. (2010). They also determined the period of early superhumps of DNP2010 as $0.^{d}05450$.

2. Photometry of the superoutburst

Early $UBVR_CI_C$ CCD observations of the DNP2010, presented in this paper, were taken in the Terskol Observatory (in Caucasus) with both the 0.6m telescope Zeiss-600 equipped by the PixelVision Vienna camera (1024x1024 array and pixel size 24 μ m) and MEADE 0.35m telescope (STL-1001 camera). Further observations were obtained with the SBIG ST10-XME camera mounted in the Newton focus of the 0.5m (f/5) reflector at the Stará Lesná AISAS observatory and with the Apogee-47p and VersArray 1300 cameras mounted in the Cassegrain focus of the 0.6m (f/12.5) and 1.25m (f/18) telescopes at the Crimean Laboratory of the Sternberg Astronomical Institute.

Positions of the variable and comparison stars 1–7 are given in Fig. 1 and Table 1. The comparison star "8" is located outside the 15x20 arcminutes field.

We determined the magnitude of the comparison star "2" using the photometric sequence published by Henden & Munari (2006) for the object PU Vul. We determined the magnitudes of the comparison stars "1, 3, 4, 5, 6, 7" and "8" relatively to the star "2". They are shown in Table 1 together with the magnitudes of the close optical component "S" of the DNP2010.

The data reduction was made using MAXIM DL4 package. The bias, dark and flat-field reduction was performed before aperture photometry. The close optical component "S" was measured together with the DNP2010.

Due to the different equipments used for our observations, it was necessary to reduce them into one system using linear shifts. As the mutual agreement of the Crimean and Stará Lesná data was good, they did not need correction. We rectified the Terskol data in accordance with $V = V_T - 0.045$, $B = B_T - 0.09$ and $R_C = R_{C,T} + 0.14$, where index "T" means "Terskol". All Terskol observations were taken in the early decline from the maximum. The comparison of the Terskol data with the Stará Lesná data taken at the same nights showed that the linear shift of the data is sufficient and the colour term is not needed. The colour indices changes were negligible as seen in Fig. 8 of the section 3.

The light curves of the DNP2010 in the $UBVR_C$ passbands are shown in Fig. 2. We accepted its discovery date May 6, 2010 (JD 2455323) as the date of the outburst. The days after outburst (AO) in our paper are calculated from this date. The DNP2010 reached a brightness maximum $V \sim 8.4$ mag on May 7, 2010. Due to the fact that our observations of DNP2010 started 9 days AO, we added the data from VSNET before May 18, 2010 from VSNET to complete the shape of the superoutburst light curve.

The list of our observations of DNP2010 is given in Table 2. It includes JD, the average $UBVR_CI_C$ magnitudes during the night, the number of CCD frames and the combination of the telescope and CCD-camera denoted by marks "a, m, s, p, v".

All our $UBV(RI)_C$ Crimea and Stará Lesná CCD observations of the DNP2010 during its superouburst, decline and in quiescence are displayed in Appendix as follows: U in Table 4, B in Table 5, V in Table 6, R_C in Table 7 and I_C in Table 8. Because of strong influence of the close companion to the brightness of the DNP2010, which increased from the R_C to I_C passband, we omitted the I_C data after JD 2455358, when the brightness of the system in the I_C passband decreased to 15 mag. The Terskol CCD observations of the DNP2010 are displayed on-line at http://www.astro.sk/caosp/Eedition/FullTexts/vol42no1/pp39-79.dat/.

The brightness of the DNP2010 declined by 2 magnitudes 13 days after maximum. The object returned to its quiescence stage ($V \sim 16.0$ mag) at the end of September 2010, 140 days AO (see Fig. 2). Nevertheless, night to night brightness variations with the amplitude of 0.2–0.4 mag remained. Usually, both B and V light curves were similar with the amplitude of variations two times larger in the B passband than in the V one. But we have found the case, when the depression in the B passband, which started on JD 2455513 (190

Dwarf nova Pegasi 2010

Table 2. The mean $UBVR_cI_c$ -magnitudes of DNP2010 obtained at Terskol ("p": Zeiss-600, PixelVision and "m": MEADE, STL-1001), Stará Lesná ("s": 0.5m, SBIG ST10-XME) and Crimea ("a": Zeiss-600, Apogee-47p and "v": ZTE-1.25m, VersArray 1300). "N" is the number of frames, JD = JD*+2455000.

-											
JD*	U	Ν	В	Ν	V	Ν	R_c	Ν	I_c	Ν	Obs.
332	—		9.87	173	9.93	897	10.11	192	—		$_{\rm p,m}$
334	_		—		10.34	525	_	_	—		р
336	_		—		10.57	535	_	_	—		р
337	_		10.46	220	10.65	220	10.67	220	—		m
338	10.05	2	10.62	178	10.78	319	10.81	174	12.00	2	$^{\mathrm{m,s}}$
340	10.46	3	10.97	2	11.10	319	11.08	5	12.24	3	$^{\mathrm{m,s}}$
341	_		11.04	139	11.15	137	11.16	137	12.27	4	m
342	10.49	3	10.98	227	11.12	431	11.10	226	—		$^{\mathrm{m,s}}$
343	_		10.99	177	11.12	178	11.13	176	—		m
345	_		11.00	55	11.15	55	11.15	60	—		m
346	10.74	2	11.21	2	11.35	94	11.35	3	12.49	2	\mathbf{S}
347	_		12.07	157	12.21	159	12.15	158	—		m
348	-		13.69	268	13.62	266	13.37	274	—		m
350	_		14.41	3	14.30	77	14.00	3	14.43	3	s
353	13.49	3	14.75	2	14.59	53	14.32	2	14.65	2	s
354	13.79	2	14.86	2	14.82	170	14.34	3	14.68	2	\mathbf{S}
357	13.85	3	15.13	2	14.87	36	14.73	1	14.89	2	\mathbf{S}
358	14.14	4	15.24	3	14.97	85	14.84	2	15.00	2	\mathbf{S}
380	14.38	2	15.68	1	15.73	30	15.65	1	_		\mathbf{S}
381	14.71	1	15.81	3	15.83	55	15.78	3	—		\mathbf{S}
382	-		-		15.92	21	-		-		\mathbf{S}
383	-		-		15.95	51	-		-		\mathbf{S}
385	_		15.76	2	16.02	40	15.84	2	_		\mathbf{S}
387	14.93	3	15.94	7	16.06	59	15.87	11	_		\mathbf{S}
388	14.51	2	15.74	35	15.83	49	15.68	3	_		\mathbf{S}
389	14.97	3	15.76	26	15.88	33	15.88	2	_		\mathbf{S}
390	14.78	2	15.73	25	15.91	32	16.04	2	—		\mathbf{S}
391	-		15.75	18	15.85	12	15.67	1	_		\mathbf{S}
399	14.82	4	15.81	82	15.89	27	16.07	3	—		\mathbf{S}
434	-		15.97	8	16.00	26	15.83	16	_		\mathbf{S}
438	-		16.13	7	16.18	8	-		-		\mathbf{S}
454	-		16.07	15	16.04	14	15.91	4	_		a
455	15.03	2	15.93	13	16.08	14	15.83	4	_		a
459	15.14	3	16.41	14	16.23	22	16.10	3	-		a
463	15.40	2	16.39	14	16.27	25	16.19	3	—		a
464	-		16.30	21	16.31	38	-		—		a
468	15.37	3	16.39	22	16.30	20	16.20	4	_		a

$\overline{\mathrm{JD}^*}$	U	Ν	В	Ν	V	Ν	R_c	Ν	I_c	Ν	Obs.
482	_		16.26	27	16.28	34	16.23	2	_		s
483	—		16.37	31	16.27	37	16.29	2	_		\mathbf{S}
484	—		16.25	19	16.29	48	16.17	3	_		\mathbf{S}
491	—		_		16.27	21	—		_		\mathbf{S}
497	—		16.42	18	—		16.42	2	_		\mathbf{S}
509	—		16.50	66	16.54	56	—		_		v
511	—		16.39	87	16.25	75	—		_		v
513	14.90	54	16.58	59	16.40	5	15.99	1	_		v
514	15.15	74	16.72	73	16.31	2	16.24	2	_		v
515	-		16.09	8	16.21	9	16.11	6	-		\mathbf{S}
521	—		16.35	5	16.31	6	16.32	7	-		\mathbf{S}
655	—		16.49	3	16.13	1	16.07	3	_		\mathbf{S}
657	—		16.45	2	16.01	1	15.98	1	_		s
662	-		16.27	5	16.05	1	16.05	1	—		s

Table 2. (continued)

days after the outburst) and continued also the next night, was replaced by an increase of brightness in the V passband. The amplitude of the brightness variations increased with decreasing wavelength and reached 0.5 mag in the U passband and 0.4 mag in the B passband. Such behavior could be explained by non-stationary processes in the hot accretion disk, radiating mostly in the UV region.

2.1. Evolution of superhumps and periodograms

There were systematic investigation of period variations of superhumps in a number of papers about the values of period derivatives $Pdot = \dot{P}/P$ in SU UMa- and WZ Sge-type systems (Kato et al., 2009, 2010, 2012). The authors found that O-C diagrams for many of them consist of an "A", a "B" and a "C" stage. As the duration of the stage "A" is short, the observational data from this early stage of a superoutburst are very often missing. The longer stages "B" and "C" are studied better. During the stage "B" the superhump period is usually stabilized with positive Pdot and superhump period larger than the orbital one. During the "C" stage the superhump period becomes shorter. The transition between the stage "B" and "C" is abrupt.

The short term variations of the V light curves in different stages of superoutburst, after the declining trend removal, are depicted in Fig. 3. The evolution of the single-humped profile in the stage "B" through very dissected hump profiles in the stage "C" up to the variations of brightness in the last stage of superoutburst and quiescence are shown in four plots for each stage.

After careful removal of the superoutburst declining trend from our BVR_C light curves, we combined them together to find out more precisely the periods of

Figure 2. The $UBVR_C$ light curves of the DNP2010. The number of days after the outburst are marked on the top axis. The beginning and end of the superhumps' stages are designated by arrows.

superhumps using the method of Fourier analysis. The periodograms of different segments of time series are shown in Fig. 4. Due to the fact that our observations started 9 days AO, they did not cover the stage A ("early superhumps"). As seen in Fig. 4, we determined periods of ordinary superhumps in a stage "B", approximate location of the "period break" (transition to "late superhumps") and periods of late superhumps in a stage "C". In the last stage of superoutburst and quiescence we did not find any clear periodicities in segments 57–76 days AO and 186–192 days AO. A very imprecise period of $0.^{d}05268$ appeared on the periodogram in segment 111–145 days AO. We found a period of $0.^{d}05435$ in segment 159–174 days AO.

Because the amplitudes of superhumps depend on the passband only slightly, we present their summarized phase light curves in the B, V, R_C passbands in Fig. 5. The observational data are marked by grey points, and the average light curves – by black ones. The folded light curves of DNP2010 were phased with the periods of $0.^{d}0.5493$ (9–15 d AO), $0.^{d}0.5512$ (17–20 d), $0.^{d}05486$ (24–25 d), $0.^{d}05485$ (27–35 d), $0.^{d}0566$ (111–145 d) and $0.^{d}05435$ (159–174 d) in accordance with the values of periods given in Fig. 4. We took the initial epoch of the superhump maximum $HJD_{max} = 2455332.4152$.

Table 3. The superhumps maxima and their O - C residuals. *E* is the number of the cycle. $JD=JD^*+2\,455\,000$.

E	JD^*	O - C	error	E	JD^*	O - C	error
1	332.467	-0.0033	0.001	273	347.469	0.0099	0.004
2	332.523	-0.0024	0.001	274	347.519	0.0048	0.004
38	334.499	-0.0102	0.001	289	348.349	0.0082	0.001
75	336.528	-0.0202	0.001	290	348.394	-0.0019	0.001
92	337.466	-0.0190	0.001	292	348.509	0.0028	0.001
93	337.520	-0.0201	0.001	327	350.433	-0.0019	0.003
110	338.458	-0.0189	0.002	329	350.541	-0.0041	0.003
111	338.511	-0.0210	0.001	384	353.553	-0.0229	0.003
146	340.445	-0.0157	0.010	399	354.386	-0.0165	0.001
164	340.460	+0.0074	0.013	400	354.439	-0.0186	0.001
165	341.510	0.0023	0.013	401	354.495	-0.0177	0.005
182	342.445	0.0005	0.010	402	354.551	-0.0168	0.006
183	342.503	0.0034	0.012	456	357.518	-0.0255	0.005
184	342.550	-0.0047	0.010	473	358.445	-0.0353	0.008
200	343.442	0.0056	0.006	474	358.499	-0.0364	0.005
201	343.487	-0.0045	0.006	475	358.553	-0.0375	0.005
237	345.488	0.0127	0.020				

Below we describe some features of the nightly and phased light curves from Figs. 3-5.

Days 9–15 AO.

Ordinary superhumps with the amplitude of about 0.1 mag in V were present. The mean period was $0.^{d}05493$. Flickering was hardly visible in scattered data, but in the last two nights considerable flashes were observed. The light curves exhibited a sharp maximum, but their minimum evolves from broad to narrow. The phased light curve has a saw-edged form, typical for "ordinary" superhumps.

Days 17–20 AO.

Ordinary superhumps remained, but their shape changed and amplitude decreased. The mean period was $0.^{d}05512$. Comparing with the previous interval, superhumps looked like being turned upside-down. The sharp maximum became broad, and the minimum, on the contrary, narrow. Flickering became more evident, and its amplitude sometimes reached 0.1 mag. As seen from Fig. 2, the V light curve exhibited the plateau before the end of the stage "B" and transition to the stage "C".

Days 24–25 AO.

The V light curve exhibited dramatic decay after transition to the stage "C". The amplitude of short-term brightness variations increased twice and reached 0.5 mag in day 25 AO. As seen from Fig. 3, the humps were spoiled by small flares. Nevertheless, the mean period of $0.^{d}05486$ was well-determined and in

Figure 3. The nightly V light curves of DNP2010 during the superoutburst after the declining trend removal and in quiescence relatively to the mean night value of the magnitude. The days after outburst (AO) are marked. The ordinary superhumps of stage "B" are shown in plots a1–a4, late superhumps of stage "C" in plots b1–b4 and variations of brightness in the last stage of the superoutburst and quiescence in plots c1-c4.

Figure 4. The periodograms of different segments of time series. The best period in each time segment is marked by an arrow.

the average, summed light curve a single-humped profile is visible (Fig. 5).

Days 27–35 AO.

The V light curve exhibited moderate fading. The amplitude of short-term variations was unstable, varying from 0.1 to 0.4 mag. In general, once in a cycle a noticeable (about 0.2 mag) flash or dip appeared. The mean period of $0.^{d}05485$ was close enough to the previous one.

Days 57–76 AO.

The nights were combined in one interval, because no evident superhumps were determined. The determination of their period failed.

Figure 5. The phase diagrams of ordinary and late superhumps and brightness variations in a late decline and quiescence, found from the summarized nightly light curves in the B, V, R_C passbands.

Days after 111 AO.

We attempted to find out the mean period in different time intervals. Results are shown in Fig. 4. Unfortunately, the spectral window of the data is rather poor. Short datasets and large gaps between the observations cause severe aliasing. Therefore, identification of the best periods is ambiguous. We also convolved curves with a late superhumps' period, trying to find its echo in the quiescence state, but no reliable outcome was obtained. As seen in Fig. 3, the nightly light curves became irregular with considerable flickering, dips and flashes. The amplitude of variability changed from 0.1 to 0.5 mag.

Due to the observational gaps and high flickerings, it is a challenging problem to indicate the end of the stage "B" and the exact beginning of the stage "C" in some DNe (see Kato et al. 2009, 2010, 2012). Nevertheless, for DNP2010 we can say for sure that ordinary superhumps, well detected in day 20 AO, were not present in day 23 AO. According to Kato (2010), the DNP2010 had not yet entered to the stage "C" of superhump evolution in day 22 AO, but was close to the transition. Therefore, the transition from the "B" stage to the "C" stage occurred between the days 22 and 23 AO.

The two intervals cover the stage "C" of superhumps' evolution: days 24–25 AO and 27–35 AO. The period of late superhumps $P_{sh} = 0.^{d}05486$ was almost stable as opposed to the superhumps' amplitude. During the transition from the stage "B" to "C" a superhump period decreased by 0.4 %, which is a typical value for such objects (Kato et al., 2009, 2010, 2012).

The periods of "ordinary" superhumps were presented in a list of WZ Sgetype systems (Chochol et al. 2010). The authors found a mean value of superhump period excess $\epsilon = P_{sh}/P_{orb} - 1 = 0.019 \pm 0.03$. Using this relation we calculated the orbital period of DNP2010 - $0.^{d}0542 \pm 0.005$. We estimated the mass of the secondary red dwarf component using the empirical formula (see Warner, 1995)

$$M_2 = 0.065 P_{orb}^{5/4}(h),$$

as $0.09 \pm 0.01 \ M_{\odot}$.

3. Colour-magnitude and two-colour diagrams

Tracks of DNP2010 during the superoutburst from day 9 AO to day 68 AO are plotted in (V, B - V) and (V, B - R) colour-magnitude diagrams (Fig. 6). Data points are marked with the number of days AO. The type of superhumps and behavior of the V passband data in different time intervals are indicated, too. In days 14–27 AO, the courses of the B - V and V - R indices are almost identical, but in day 9 AO and after day 30 AO, the courses of both indices are different. In general, the star becomes redder at the decline and bluer at a transition to quiescence. In the paper of Pavlenko et al. (2008) the tracks of some SU UMa-stars and postnovae in (V, B - R) diagrams show similar behaviour.

The tracks of the object in the two-colour (U-B, B-V), $(B-V, V-R_C)$ and $(V-R_C, R_C-I_C)$ diagrams are shown in Figs. 7 – 9. The position of the field stars, used as comparison stars, are marked, too. The small distance of the object 70 pc (Gänsicke, 2010) and moderately high galactic latitude +30° allow to neglect the effect of interstellar reddening.

As seen in Fig. 7, the investigated object was located below the blackbody sequence and close to the main sequence in days 15-23 AO. This feature can be explained by a relatively thick accretion disk, so the energy distribution in the spectrum is more similar to the star than to the diluted gas. After rapid fading of brightness in days 23–27 AO, the significant UV excess appeared, typical for a majority of cataclysmic variables. The object moved to the position above the blackbody sequence. At that time a transition from "ordinary" to "late" superhumps occurred. In days 30–35 AO its colour temperature varied between 10000–15000 K. Then either UV excess or colour temperature gradually increased and a position of DNP2010 corresponded to the values 16000-24000 K. The maximum of colour temperature was reached in day 64 AO. Then the temperature decreases to 16000 K in day 132 AO. The behaviour of DNP2010 during its outburst was similar to the prototype WZ Sge. Godon et al. (2004) and Long et al. (2004) investigated the temperature changes of the white dwarf in WZ Sge during the superoutburst in 2001. The white dwarf, which had a temperature 14500 K prior to the outburst was heated to 28200 K by the outburst in day 50 AO. 17 months AO the WD had cooled to 15 900 K. For earlier investigated dwarf novae during their outbusts the use of two-colour (U - B, B - V) diagrams led to the determinations of their colour temperatures: 12000 K for V466 And (Chochol et al., 2010), 15000 K for OT J023839.1 +255648 (Chochol et al., 2009) and about 22 000 K for the dwarf nova in Leo: ID CSS100217:104411+211307 (Drake et al. 2009, Shugarov et al., 2012).

Figs. 8 –9 show the tracks of the DNP2010 in the $(B - V, V - R_C)$ and $(V - R_C, R_C - I_C)$ diagrams. The colour indices of a black body, calculated by Dodin (2011), are depicted by a solid line. As seen in Fig. 8, the object was below the main sequence in day 9 AO (near the beginning of ordinary superhumps). This can be the result of a peculiar spectral energy distribution. Its colour temperature reached 18 000 K, which is typical for dwarf novae during their outbursts. Till day 24 AO, the colour temperature of the DNP2010 varied from 16 000 K to 18 000 K, but in day 25 AO, it suddenly dropped and reached 9 000 K. Simultaneously, a dramatic decrease of brightness started. Apparently, the characteristics of the accretion disk changed.

As seen in Fig. 9, the position of DNP2010 was above the black body and main sequence and near A0–A5 stars (~ 10000 K). After the fast decline stage (27–30 d AO) the colour temperature dropped by several thousand degrees, but the blue excess increased. The $(B-V, V-R_C)$ and $(V-R_C, R_C-I_C)$ diagrams were plotted only for the first 35 and 30 days AO, respectively. Thereafter, the observations were distorted by a close companion.

Figure 6. The colour-magnitude (V, B - V) and $(V, V - R_C)$ diagrams. The days after outburst (AO) are marked.

Figure 7. The two-colour (U - B, B - V) diagram and its detail. The blackbody and main sequences are plotted with the solid and dot lines. Filled circles and evolutionary track correspond to the DNP2010, asterisks to the comparison stars.

Figure 8. The two-colour $(B - V, V - R_C)$ diagram and its detail. The signs and symbols are the same as in Fig. 7.

Figure 9. The two-colour $(V - R_C, R_C - I_C)$ diagram. The signs and symbols are the same as in Fig. 7.

The colour temperatures found from the $(B-V, V-R_C)$ and $(V-R_C, R_C-I_C)$ diagrams were considerably lower than those derived from the (U-B, B-V) diagram due to the fact that in the IR region dominates the continuum from cooler parts of the accretion disk. The presence of strong emission lines near the Balmer jump and in the blue region of the spectrum can also have an influence on the determination of the colour temperature. One should bear in mind that the DNP2010 has an extremely close optical component "S", most probably a main sequence F6 – G9 type star (see Figs. 7 – 9), that distorts visible magnitudes and colours. We corrected the magnitude of a variable in our calculations, removing the influence of this component. However, due to the difficulties in determination of its exact magnitude, some systematic errors, up to a few tenths of magnitude, could remain. So the colour temperature, determined from colour indices, can slightly differ from the true value.

4. O - C diagrams

We used the O - C analysis for finding the superhump period variations. The dependence of superhump amplitude, the O - C values and V magnitude differences as a function of number of superhumps' periods are plotted in Fig. 10. We

took the mean period of $0.^{d}055106$ and the initial epoch HJD = 2455332.4152for calculations of the O - C values and obtained $Pdot = +6.2 \cdot 10^{-5}$ from a parabolic fit. The V magnitude differences were calculated relatively to the value of V at maximum. The O - C diagram suggests day 22 AO as the last day of the "B" stage. According to Kato et al. (2010), the "ordinary" superhumps apperead in day 7 AO. So, the duration of the "B" stage lasted about 15 days. The times of superhumps' maxima and the O - C residuals are given in Table 3.

As seen in Fig. 10, the superhump amplitude reached its maximum during the sharp decrease of the V magnitude, after the beginning of the phase "C". The range of superhumps' amplitudes of the DNP2010 is about 0.3 mag, in agreement with other WZ Sge-type systems, with the range of superhumps up to 0.5 mag (Kato et al., 2009, 2010, 2012).

The linear approximation of the O - C values for the phase "C" gave a period of $0.^{d}05490$, close to the results obtained by the method of Fourier analysis. Kato et al. (2010) presented the O - C diagram for DNP2010 till 82 days AO. Our O - C diagram, which covers only 36 days AO, is very similar. Our observations after the day 57 AO do not support the existence of any superhumps and the light curve and periodograms (Figs. 3 and 4) support this fact, leaving the doubts about a strict periodicity of late superhumps found by Kato et al. (2010). Our observations after day 57 show that the flickering amplitude became appreciably larger than any smooth variations of the light curves.

The O-C diagram of DNP2010 looks like other diagrams of superoubursts of SU UMa- and WZ Sge-stars (see Kato et al., 2009, 2010, 2012): a positive *Pdot* on the stage "B" (the increase of the superhump period) and relatively stable and shorter period during the stage "C".

5. Summary

We estimated the duration of the stage "B" of the DNP2010 to ≈ 15 days and found out the approximate time of transition between "B" and "C" stage as 22–23 day AO. We determined the mean period of ordinary superhumps as $0.^{d}055106$ and superhump period increase: $Pdot = \dot{P}/P = +6.2 \cdot 10^{-5}$ in the stage "B". We determined the period of late superhumps $0.^{d}05490$ in the stage "C". We calculated the orbital period of the DNP2010 to be $0.^{d}0542\pm 0.005$ and estimated the mass of the red dwarf component in the binary as $0.09\pm 0.01 \ M_{\odot}$.

The evolution of the superhump shape and the superhump period and behaviour of DNP2010 at the two-colour and colour-magnitude diagrams were investigated. We showed that the colour temperature of the hot component during the superoutburst increased from 10 000 to 24 000 K. Thereafter, the hot component started to cool down and its colour temperature declined to 16 000 K in day 132 AO.

We registered strong UV-excess in quiescence (190 days AO) and connected this fact to processes in the central parts of the accretion disk. The flickering

Figure 10. The dependence of superhumps' amplitude, the O - C values and the V magnitude differences as a function of a number of superhump periods. The superhump stages "B", "C" and the moment of transition between them are marked.

with a variable amplitude during the decline and in quiescence was observed. We can conclude that the behaviour of dwarf nova Pegasi 2010 is consistent with the behaviour of other WZ Sge-type stars.

Acknowledgements. This work was supported by VEGA grant 2/0038/10 and grants NSh-2374.2012.2, RFBR-11-02-00258, 11-02-00495. N.A. Katysheva appreciates the scholarship of SAIA and the hospitality of the Astronomical Institute of the Slovak Academy of Sciences. Our special thank belongs to the anonymous referee of our paper, for valuable comments and suggestions. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. The National Geographic Society - Palomar Observatory Sky Atlas (POSS-I) was made by the California Institute of Technology with grants from the National Geographic Society. The Second Palomar Observatory Sky Survey (POSS-II) was made by the California Institute of Technology with funds from the National Science Foundation, the National Aeronautics and Space Administration, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. The Oschin Schmidt Telescope is operated by the California Institute of Technology and Palomar Observatory.

A. $UBVR_CI_C$ observations

Table 4. U magnitudes of DNP2010. The symbols after magnitudes are explained in Table 2. $JD_{hel} = JD^* + 2~455~000$.

							-
JD*	U	JD*	U	JD^*	U	JD*	U
338.4829	$10.06~{\rm s}$	459.2628	$15.05 \ a$	513.2272	14.98 v	514.1880	15.06 v
338.4844	$10.06 \mathrm{~s}$	459.2690	15.17 a	513.2296	15.05 v	514.1902	15.05 v
340.4411	$10.49 \mathrm{~s}$	459.2749	15.11 a	513.2345	14.97 v	514.1941	14.96 v
340.4427	$10.43~{\rm s}$	463.2810	$15.45 \ a$	513.2370	14.94 v	514.1964	$15.04~\mathrm{v}$
340.4444	$10.46~{\rm s}$	463.2870	$15.40 \ a$	513.2394	14.92 v	514.1987	15.01 v
342.4948	$10.51~{\rm s}$	468.3434	$15.33 \ a$	513.2419	14.87 v	514.2010	$15.05~\mathrm{v}$
342.4967	$10.47~\mathrm{s}$	468.3492	$15.32 \ a$	513.2443	$14.93~\mathrm{v}$	514.2032	$15.04~\mathrm{v}$
342.4987	$10.49~\mathrm{s}$	468.3549	$15.35~{\rm a}$	513.2468	$14.87~\mathrm{v}$	514.2055	$15.07~\mathrm{v}$
346.4807	$10.73~{\rm s}$	513.1424	14.86 v	513.2493	14.86 v	514.2077	$15.05~\mathrm{v}$
346.4824	$10.74~\mathrm{s}$	513.1462	$14.75~\mathrm{v}$	513.2517	14.86 v	514.2100	$15.11~\mathrm{v}$
350.3987	$13.56~\mathrm{s}$	513.1487	14.73 v	513.2542	$14.79~\mathrm{v}$	514.2123	$15.08~\mathrm{v}$
350.4893	$13.42~\mathrm{s}$	513.1511	14.76 v	513.2566	$14.78~\mathrm{v}$	514.2145	$15.09~\mathrm{v}$
350.4918	$13.46~\mathrm{s}$	513.1536	$14.82~\mathrm{v}$	513.2591	$14.72~\mathrm{v}$	514.2168	15.15 v
353.5278	$13.81~{\rm s}$	513.1560	$14.79~\mathrm{v}$	513.2615	$14.79~\mathrm{v}$	514.2191	$15.14~\mathrm{v}$
353.5292	$13.76~\mathrm{s}$	513.1585	$14.82~\mathrm{v}$	513.2648	$14.83~\mathrm{v}$	514.2213	$15.20~\mathrm{v}$
354.4361	$13.90~\mathrm{s}$	513.1609	14.76 v	513.2721	$14.92~\mathrm{v}$	514.2236	$15.19~\mathrm{v}$
354.4381	$13.86~\mathrm{s}$	513.1634	$14.74~\mathrm{v}$	513.2746	$14.97~\mathrm{v}$	514.2259	$15.13~\mathrm{v}$
354.4401	$13.96~\mathrm{s}$	513.1658	$14.80~\mathrm{v}$	513.2819	14.86 v	514.2281	$15.12~\mathrm{v}$
357.4907	$14.18~\mathrm{s}$	513.1683	$14.93~\mathrm{v}$	513.2844	$14.87~\mathrm{v}$	514.2304	$15.14~\mathrm{v}$
357.4929	$14.13~\mathrm{s}$	513.1707	$14.92~\mathrm{v}$	513.2868	$14.86~\mathrm{v}$	514.2326	$15.17~\mathrm{v}$
357.4970	$13.99~\mathrm{s}$	513.1732	$14.91~\mathrm{v}$	513.2917	$14.96~\mathrm{v}$	514.2349	$15.21~\mathrm{v}$
357.4985	$14.10~\mathrm{s}$	513.1783	$14.82~\mathrm{v}$	514.1424	$15.06~\mathrm{v}$	514.2372	$15.19~\mathrm{v}$
358.4769	$14.34~\mathrm{s}$	513.1807	$14.82~\mathrm{v}$	514.1447	$15.12~\mathrm{v}$	514.2394	$15.18~\mathrm{v}$
358.4790	$14.47~\mathrm{s}$	513.1832	14.73 v	514.1470	$15.19~\mathrm{v}$	514.2417	$15.18~\mathrm{v}$
381.4040	$14.70~\mathrm{s}$	513.1856	14.73 v	514.1492	$15.19~\mathrm{v}$	514.2440	$15.23~\mathrm{v}$
387.4368	$14.97~\mathrm{s}$	513.1881	$14.79~\mathrm{v}$	514.1515	$15.27~\mathrm{v}$	514.2462	$15.24~\mathrm{v}$
387.4382	$14.94~\mathrm{s}$	513.1905	$14.87~\mathrm{v}$	514.1538	$15.22~\mathrm{v}$	514.2485	$15.22~\mathrm{v}$
387.4397	$14.91~\mathrm{s}$	513.1930	$14.98~\mathrm{v}$	514.1561	15.12 v	514.2508	$15.15~\mathrm{v}$
388.4692	$14.59~\mathrm{s}$	513.1954	$14.93~\mathrm{v}$	514.1583	$15.08~\mathrm{v}$	514.2530	15.16 v
388.4707	$14.48~\mathrm{s}$	513.1979	$14.85~\mathrm{v}$	514.1606	$15.03~\mathrm{v}$	514.2553	$15.19~\mathrm{v}$
389.3832	$15.03~\mathrm{s}$	513.2003	$14.90~\mathrm{v}$	514.1629	$15.08~\mathrm{v}$	514.2576	$15.23~\mathrm{v}$
389.3850	$14.90~\mathrm{s}$	513.2028	$14.87~\mathrm{v}$	514.1652	$15.02~\mathrm{v}$	514.2598	$15.22~\mathrm{v}$
389.3887	$14.97~\mathrm{s}$	513.2052	14.86 v	514.1674	$15.06~\mathrm{v}$	514.2621	$15.23~\mathrm{v}$
390.4863	$14.77~\mathrm{s}$	513.2077	$14.84~\mathrm{v}$	514.1697	$15.06~\mathrm{v}$	514.2643	$15.18~\mathrm{v}$
390.4999	$14.72~\mathrm{s}$	513.2100	$14.95~\mathrm{v}$	514.1720	$15.10~\mathrm{v}$	514.2666	$15.20~\mathrm{v}$
399.3846	$14.73~\mathrm{s}$	513.2125	$14.95~\mathrm{v}$	514.1743	$15.09~\mathrm{v}$	514.2689	$15.11~\mathrm{v}$
399.3857	$14.96~\mathrm{s}$	513.2149	$14.96~\mathrm{v}$	514.1766	$15.13~\mathrm{v}$	514.2711	$15.07~\mathrm{v}$
399.3868	$14.74~\mathrm{s}$	513.2174	$14.91~\mathrm{v}$	514.1788	$15.13~\mathrm{v}$	514.2734	$15.05~\mathrm{v}$
399.3879	$14.81~\mathrm{s}$	513.2198	$14.93~\mathrm{v}$	514.1811	$15.14~\mathrm{v}$	514.2758	$15.09~\mathrm{v}$
455.3911	$14.64~\mathrm{a}$	513.2223	$14.91~\mathrm{v}$	514.1834	$15.13~\mathrm{v}$	514.2780	$15.10~\mathrm{v}$
455.4020	$15.46~\mathrm{a}$	513.2247	$14.94~\mathrm{v}$	514.1857	$15.12~\mathrm{v}$	514.2803	$15.12~\mathrm{v}$

Table 4. Continued.

JD*	U	JD*	U	JD*	U	JD*	U
514.2826	$15.20~\mathrm{v}$	514.2917	15.36 v	514.3008	$15.23~\mathrm{v}$	514.3452	15.10 v
514.2849	$15.25~\mathrm{v}$	514.2940	$15.31~\mathrm{v}$	514.3031	15.11 v		
514.2872	$15.29~\mathrm{v}$	514.2963	$15.29~\mathrm{v}$	514.3054	$15.12~\mathrm{v}$		
514.2894	$15.37~\mathrm{v}$	514.2986	$15.29~\mathrm{v}$	514.3077	$15.15~\mathrm{v}$		

Table 5. B magnitudes of DNP2010. The symbols after magnitude are explained in Table 2. $JD_{hel}=JD^* + 2\,455\,000$.

JD*	В	JD*	В	JD*	В	JD*	B
338.4788	$10.66~{\rm s}$	388.3649	$15.79~\mathrm{s}$	388.5492	$15.77 \ {\rm s}$	390.3969	$15.83 \mathrm{~s}$
338.4830	$10.58~{\rm s}$	388.3686	$15.82~\mathrm{s}$	388.5595	$15.75~\mathrm{s}$	390.4044	$15.90~\mathrm{s}$
338.4845	$10.64~{\rm s}$	388.3761	$15.84~\mathrm{s}$	389.3899	$15.99~\mathrm{s}$	390.4194	$15.87~\mathrm{s}$
340.4412	$10.96~{\rm s}$	388.3836	$15.74~\mathrm{s}$	389.3937	$15.86~\mathrm{s}$	390.4344	$15.84~\mathrm{s}$
340.4429	$10.99~\mathrm{s}$	388.3874	$15.75~\mathrm{s}$	389.4011	$15.87~\mathrm{s}$	390.4419	$15.83~\mathrm{s}$
342.4951	$10.97~\mathrm{s}$	388.3911	$15.73~\mathrm{s}$	389.4056	$15.88~\mathrm{s}$	390.4457	$15.90~\mathrm{s}$
342.4971	$10.99~\mathrm{s}$	388.3986	$15.65~\mathrm{s}$	389.4077	$15.88~\mathrm{s}$	390.4532	$15.98~\mathrm{s}$
342.4990	$10.98~{\rm s}$	388.4061	$15.73~\mathrm{s}$	389.4114	$15.96~\mathrm{s}$	390.4644	$15.87~\mathrm{s}$
350.3956	$14.47~\mathrm{s}$	388.4099	$15.72~\mathrm{s}$	389.4189	$15.94~\mathrm{s}$	390.4757	$15.86~\mathrm{s}$
350.4904	$14.38~\mathrm{s}$	388.4136	$15.71~\mathrm{s}$	389.4264	$15.95~\mathrm{s}$	390.4870	$15.72~\mathrm{s}$
350.4929	$14.36~\mathrm{s}$	388.4249	$15.77~\mathrm{s}$	389.4302	$15.92~\mathrm{s}$	390.4970	$15.71~\mathrm{s}$
353.5247	$14.71~\mathrm{s}$	388.4324	$15.96~\mathrm{s}$	389.4377	$15.85~\mathrm{s}$	390.5051	$15.65~\mathrm{s}$
353.5265	$14.79~\mathrm{s}$	388.4399	$15.95~\mathrm{s}$	389.4456	$15.74~\mathrm{s}$	390.5166	$15.70~\mathrm{s}$
354.4376	$14.86~\mathrm{s}$	388.4437	$15.86~\mathrm{s}$	389.4493	$15.75~\mathrm{s}$	390.5278	$15.63~\mathrm{s}$
354.4395	$14.86~\mathrm{s}$	388.4474	$15.82~\mathrm{s}$	389.4568	$15.66~\mathrm{s}$	390.5353	$15.45~\mathrm{s}$
357.4924	$15.10~\mathrm{s}$	388.4512	$15.76~\mathrm{s}$	389.4643	$15.64~\mathrm{s}$	390.5391	$15.44~\mathrm{s}$
357.4945	$15.06~\mathrm{s}$	388.4549	$15.73~\mathrm{s}$	389.4681	$15.36~\mathrm{s}$	390.5428	$15.46~\mathrm{s}$
358.4721	$15.24~\mathrm{s}$	388.4587	$15.70~\mathrm{s}$	389.4718	$15.28~\mathrm{s}$	390.5466	$15.52~\mathrm{s}$
358.4744	$15.24~\mathrm{s}$	388.4705	$15.64~\mathrm{s}$	389.4756	$15.62~\mathrm{s}$	390.5541	$15.56~\mathrm{s}$
358.4768	$15.23~\mathrm{s}$	388.4786	$15.62~\mathrm{s}$	389.4831	$15.66~\mathrm{s}$	390.5655	$15.47~\mathrm{s}$
380.3742	$15.68~\mathrm{s}$	388.4861	$15.64~\mathrm{s}$	389.4906	$15.68~\mathrm{s}$	391.4955	$15.79~\mathrm{s}$
381.3933	$15.74~\mathrm{s}$	388.4899	$15.65~\mathrm{s}$	389.4943	$15.66~\mathrm{s}$	391.4998	$15.78~\mathrm{s}$
381.3975	$15.86~\mathrm{s}$	388.4974	$15.74~\mathrm{s}$	389.5058	$15.66~\mathrm{s}$	391.5036	$15.66~\mathrm{s}$
381.4018	$15.84~\mathrm{s}$	388.5086	$15.71~\mathrm{s}$	389.5108	$15.64~\mathrm{s}$	391.5073	$15.56~\mathrm{s}$
385.5136	$15.72~\mathrm{s}$	388.5166	$15.21~\mathrm{s}$	389.5183	$15.82~\mathrm{s}$	391.5111	$15.55~\mathrm{s}$
385.5187	$15.81~\mathrm{s}$	388.5184	$15.35~\mathrm{s}$	389.5296	$15.88~\mathrm{s}$	391.5148	$15.76~\mathrm{s}$
387.3731	$16.02~\mathrm{s}$	388.5233	$15.47~\mathrm{s}$	389.5427	$15.81~\mathrm{s}$	391.5186	$15.81~\mathrm{s}$
387.3790	$15.96~\mathrm{s}$	388.5254	$15.47~\mathrm{s}$	389.5602	$15.72~\mathrm{s}$	391.5223	$15.85~\mathrm{s}$
387.3908	$15.98~\mathrm{s}$	388.5288	$15.28~\mathrm{s}$	390.3470	$15.70~\mathrm{s}$	391.5261	$15.87~\mathrm{s}$
387.4086	$15.86~\mathrm{s}$	388.5322	$15.38~\mathrm{s}$	390.3631	$15.75~\mathrm{s}$	391.5298	$15.83~\mathrm{s}$
387.4204	$15.87~\mathrm{s}$	388.5356	$15.69~\mathrm{s}$	390.3706	$15.77~\mathrm{s}$	391.5336	$15.84~\mathrm{s}$
387.4263	$15.98~\mathrm{s}$	388.5390	$15.76~\mathrm{s}$	390.3781	$15.80~\mathrm{s}$	391.5373	$15.81~\mathrm{s}$
387.4322	$16.02 \mathrm{\ s}$	388.5424	$15.73~\mathrm{s}$	390.3894	15.77 s	391.5411	$15.76~\mathrm{s}$

Table 5. Continued.

JD*	В	JD*	В	JD*	В	JD*	В
391.5448	$15.77~\mathrm{s}$	399.5568	$15.78~\mathrm{s}$	455.4577	16.13 a	464.3837	16.29 a
391.5486	$15.65~\mathrm{s}$	399.5643	$15.70~\mathrm{s}$	455.4602	16.16 a	464.3886	$16.30 \ a$
391.5523	$15.66~\mathrm{s}$	399.5680	$15.66~\mathrm{s}$	455.4627	$16.15 \ a$	464.4012	$16.34~\mathrm{a}$
391.5561	$15.90~\mathrm{s}$	399.5718	$15.71~\mathrm{s}$	459.2657	$16.24~\mathrm{a}$	464.4062	$16.33 \ a$
391.5598	$16.02~\mathrm{s}$	399.5755	$15.77~\mathrm{s}$	459.2719	$16.29 \ a$	464.4112	$16.28 \ a$
399.3968	$16.04~\mathrm{s}$	434.4135	$15.93~\mathrm{s}$	459.2778	$16.46 \ a$	464.4162	$16.34~\mathrm{a}$
399.4012	$15.94~\mathrm{s}$	434.4315	$15.92~\mathrm{s}$	459.2829	$16.40~\mathrm{a}$	464.4187	$16.43 \ a$
399.4049	$15.88~\mathrm{s}$	434.4414	$15.91~\mathrm{s}$	459.2858	$16.39 \ a$	468.3461	$16.39 \ a$
399.4087	$15.84~\mathrm{s}$	434.4667	$16.03~{\rm s}$	459.2886	$16.44 \ a$	468.3518	$16.50 \ a$
399.4124	$15.85~\mathrm{s}$	434.4824	$15.97~\mathrm{s}$	459.2915	$16.46~\mathrm{a}$	468.3575	$16.49 \ a$
399.4162	$15.92~\mathrm{s}$	434.5034	$15.92~\mathrm{s}$	459.2972	$16.40~\mathrm{a}$	468.3633	$16.41 \ a$
399.4199	$15.84~\mathrm{s}$	434.5201	$15.99~\mathrm{s}$	459.3029	$16.39 \ a$	468.3688	$16.33~{\rm a}$
399.4237	$15.85~\mathrm{s}$	434.5351	$16.13~\mathrm{s}$	459.3119	$16.49 \ a$	468.3712	$16.32 \ a$
399.4274	$15.81~\mathrm{s}$	438.3838	$16.21~\mathrm{s}$	459.3148	$16.45 \ a$	468.3737	$16.25 \ a$
399.4312	$15.80~\mathrm{s}$	438.3933	$16.23~\mathrm{s}$	459.3204	$16.47 \ a$	468.3762	$16.23 \ a$
399.4349	$15.76~\mathrm{s}$	438.4063	$16.30~\mathrm{s}$	459.3262	$16.37 \ a$	468.3787	$16.18 \ a$
399.4387	$15.74~\mathrm{s}$	438.4138	$16.26~\mathrm{s}$	459.3348	$16.55 \ a$	468.3812	$16.21 \ a$
399.4424	$15.98~\mathrm{s}$	438.4176	$16.21~\mathrm{s}$	463.2838	$16.22 \ a$	468.3837	$16.17 \ a$
399.4462	$16.01~{\rm s}$	438.4213	$16.14~\mathrm{s}$	463.3004	16.29 a	468.3887	16.30 a
399.4499	$15.90~\mathrm{s}$	438.4288	$16.12~\mathrm{s}$	463.3156	$16.29 \ a$	468.3962	16.33 a
399.4537	$15.95~\mathrm{s}$	454.3451	16.14 a	463.3255	16.34 a	468.4016	16.41 a
399.4574	$15.79~\mathrm{s}$	454.3529	$16.15 \ a$	463.3305	$16.29 \ a$	468.4040	16.39 a
399.4612	$15.81~\mathrm{s}$	454.3614	$16.08 \ a$	463.3384	16.35 a	468.4065	16.44 a
399.4649	$15.89 \mathrm{~s}$	454.3664	$15.92 \ a$	463.3409	16.45 a	468.4090	16.44 a
399.4687	$15.91 \mathrm{~s}$	454.3689	$15.90 \ a$	463.3434	16.48 a	468.4115	16.59 a
399.4742	$15.90 \mathrm{~s}$	454.3714	$15.91 \ a$	463.3459	$16.50 \ a$	468.4140	16.54 a
399.4780	$15.88 \mathrm{~s}$	454.3739	$15.90 \ a$	463.3509	$16.58~{\rm a}$	468.4165	$16.56~{\rm a}$
399.4817	$15.93 \mathrm{~s}$	454.3764	$16.03 \ a$	463.3559	16.59 a	468.4190	16.52 a
399.4892	$15.99 \mathrm{~s}$	454.3839	16.09 a	463.3584	16.56 a	468.4215	16.38 a
399.4967	$15.94 \mathrm{~s}$	454.3971	16.12 a	463.3609	16.57 a	482.2456	$16.30 \mathrm{\ s}$
399.5005	$15.85 \mathrm{~s}$	454.4021	$16.00 \ a$	463.3639	16.42 a	482.2497	$16.29 \mathrm{\ s}$
399.5042	$15.85 \mathrm{~s}$	454.4046	16.04 a	464.3156	16.18 a	482.2538	$16.28 \ { m s}$
399.5080	$15.79 \mathrm{\ s}$	454.4071	$16.00 \ a$	464.3230	16.19 a	482.2579	$16.30 \ { m s}$
399.5118	$15.80 \mathrm{~s}$	454.4096	15.98 a	464.3255	16.23 a	482.2661	$16.28 \ { m s}$
399.5155	$15.88 \mathrm{~s}$	454.4121	16.05 a	464.3280	16.23 a	482.2784	$16.31 \mathrm{\ s}$
399.5193	$16.02 \ {\rm s}$	455.3935	15.92 a	464.3330	16.24 a	482.2866	$16.33 \ {\rm s}$
399.5230	16.03 s	455.4005	16.01 a	464.3379	16.24 a	482.2907	16.37 s
399.5268	16.06 s	455.4092	15.78 a	464.3404	16.23 a	482.2948	16.28 s
399.5305	16.02 s	455.4171	15.74 a	464.3479	16.22 a	482.2989	16.29 s
399.5343	16.01 s	455.4246	15.87 a	464.3529	16.21 a	482.3030	16.30 s
399.5380	15.87 s	455.4321	15.89 a	464.3554	16.22 a	482.3071	16.28 s
399.5418	15.92 s	455.4371	16.00 a	464.3612	16.39 a	482.3112	16.24 s
399.5455	15.90 s	455.4396	15.96 a	464.3662	16.39 a	482.3153	16.26 s
399.5493	15.88 s	455.4451	15.98 a	464.3712	16.44 a	482.3194	16.23 s
399.5530	15.86 s	455.4526	16.21 a	464.3787	16.53 a	482.3295	16.29 s

Table 5. Continued.

JD*	В	JD*	В	JD*	В	JD*	В
482.3378	$16.24~\mathrm{s}$	484.3594	$16.31~{\rm s}$	509.1826	16.41 v	509.2492	$16.52~\mathrm{v}$
482.3460	$16.32~\mathrm{s}$	484.3669	$16.35~\mathrm{s}$	509.1840	$16.57~\mathrm{v}$	509.2506	$16.53~\mathrm{v}$
482.3542	$16.17~\mathrm{s}$	484.3781	$16.30~\mathrm{s}$	509.1855	$16.64~\mathrm{v}$	509.2521	16.61 v
482.3583	$16.24~\mathrm{s}$	484.3856	$16.28~\mathrm{s}$	509.1869	$16.60~\mathrm{v}$	509.2535	$16.57~\mathrm{v}$
482.3624	$16.14~\mathrm{s}$	484.3894	$16.33~\mathrm{s}$	509.1884	$16.62~\mathrm{v}$	509.2550	$16.63~\mathrm{v}$
482.3706	$16.18~{\rm s}$	484.3969	$16.37~\mathrm{s}$	509.1899	$16.57~\mathrm{v}$	509.2564	$16.67~\mathrm{v}$
482.3788	$16.27~\mathrm{s}$	484.4044	$16.42~\mathrm{s}$	509.1913	$16.59~\mathrm{v}$	509.2579	$16.60~\mathrm{v}$
482.3829	$16.28~\mathrm{s}$	484.4081	$16.43~\mathrm{s}$	509.1928	$16.62~\mathrm{v}$	509.2594	$16.66~\mathrm{v}$
482.3870	$16.27~\mathrm{s}$	484.4119	$16.43~\mathrm{s}$	509.1942	$16.58~\mathrm{v}$	509.2609	$16.63~\mathrm{v}$
482.3911	$16.32~\mathrm{s}$	484.4156	$16.21~\mathrm{s}$	509.1957	$16.53~\mathrm{v}$	509.2629	$16.63~\mathrm{v}$
482.3952	$16.37~\mathrm{s}$	484.4194	$16.22~\mathrm{s}$	509.1972	$16.54~\mathrm{v}$	511.1585	$16.43~\mathrm{v}$
483.2453	$16.42~\mathrm{s}$	484.4231	$16.30~\mathrm{s}$	509.1986	$16.63~\mathrm{v}$	511.1596	$16.39~\mathrm{v}$
483.2479	$16.41~{\rm s}$	484.4269	$16.42~\mathrm{s}$	509.2001	$16.66~\mathrm{v}$	511.1607	$16.42~\mathrm{v}$
483.2538	$16.39~\mathrm{s}$	484.4306	$16.40~\mathrm{s}$	509.2015	$16.62~\mathrm{v}$	511.1634	$16.47~\mathrm{v}$
483.2575	$16.38~{\rm s}$	484.4381	$16.36~{\rm s}$	509.2030	$16.53~\mathrm{v}$	511.1645	$16.39~\mathrm{v}$
483.2613	$16.42~\mathrm{s}$	484.4419	$16.31~{\rm s}$	509.2045	$16.49~\mathrm{v}$	511.1656	$16.38~\mathrm{v}$
483.2650	$16.39~\mathrm{s}$	497.2439	$16.38~{\rm s}$	509.2059	$16.52~\mathrm{v}$	511.1667	$16.35~\mathrm{v}$
483.2725	$16.35~\mathrm{s}$	497.2551	$16.37~\mathrm{s}$	509.2074	$16.47~\mathrm{v}$	511.1677	$16.39~\mathrm{v}$
483.2838	$16.34~\mathrm{s}$	497.2664	$16.42~\mathrm{s}$	509.2089	$16.42~\mathrm{v}$	511.1688	$16.42~\mathrm{v}$
483.2875	$16.30~\mathrm{s}$	497.2776	$16.43~\mathrm{s}$	509.2103	$16.45~\mathrm{v}$	511.1699	$16.39~\mathrm{v}$
483.2913	$16.24~\mathrm{s}$	497.2852	$16.39~\mathrm{s}$	509.2118	$16.43~\mathrm{v}$	511.1710	$16.35~\mathrm{v}$
483.3011	$16.31~\mathrm{s}$	497.2889	$16.36~\mathrm{s}$	509.2132	$16.39~\mathrm{v}$	511.1720	$16.34~\mathrm{v}$
483.3086	$16.37~\mathrm{s}$	497.2927	$16.35~\mathrm{s}$	509.2147	$16.36~\mathrm{v}$	511.1731	$16.41~\mathrm{v}$
483.3124	$16.39~\mathrm{s}$	497.2964	$16.46~\mathrm{s}$	509.2162	16.37 v	511.1742	$16.42~\mathrm{v}$
483.3161	$16.39~\mathrm{s}$	497.3002	$16.47~\mathrm{s}$	509.2176	16.29 v	511.1752	$16.32~\mathrm{v}$
483.3236	$16.39~\mathrm{s}$	497.3039	$16.43~\mathrm{s}$	509.2191	16.31 v	511.1763	$16.39~\mathrm{v}$
483.3311	$16.40~\mathrm{s}$	497.3077	$16.36~\mathrm{s}$	509.2205	16.30 v	511.1774	$16.43~\mathrm{v}$
483.3368	$16.39~\mathrm{s}$	497.3114	$16.36~\mathrm{s}$	509.2220	16.29 v	511.1785	$16.40~\mathrm{v}$
483.3424	$16.38~{\rm s}$	497.3189	$16.43~\mathrm{s}$	509.2235	$16.26~\mathrm{v}$	511.1796	$16.39~\mathrm{v}$
483.3461	$16.36~{\rm s}$	497.3302	$16.50~\mathrm{s}$	509.2249	16.38 v	511.1807	$16.33~\mathrm{v}$
483.3499	$16.35~\mathrm{s}$	497.3414	$16.43~\mathrm{s}$	509.2264	$16.40~\mathrm{v}$	511.1818	$16.39~\mathrm{v}$
483.3536	$16.33~\mathrm{s}$	497.3527	$16.48~\mathrm{s}$	509.2279	$16.45~\mathrm{v}$	511.1829	$16.41~\mathrm{v}$
483.3574	$16.36~{\rm s}$	497.3602	$16.43~\mathrm{s}$	509.2293	16.38 v	511.1840	$16.38~\mathrm{v}$
483.3649	$16.42~\mathrm{s}$	497.3715	$16.40~\mathrm{s}$	509.2308	16.36 v	511.1850	$16.34~\mathrm{v}$
483.3746	$16.40~\mathrm{s}$	509.1685	$16.65~\mathrm{v}$	509.2322	16.38 v	511.1861	$16.36~\mathrm{v}$
483.3784	$16.37~{\rm s}$	509.1692	16.60 v	509.2337	16.43 v	511.1872	$16.35~\mathrm{v}$
483.3821	$16.41 \mathrm{\ s}$	509.1700	16.59 v	509.2351	16.45 v	511.1883	16.36 v
483.3859	$16.41~{\rm s}$	509.1707	16.56 v	509.2366	16.46 v	511.1894	$16.34~\mathrm{v}$
483.3934	$16.49~\mathrm{s}$	509.1723	16.48 v	509.2381	$16.50~\mathrm{v}$	511.1905	16.37 v
483.4046	$16.33~{\rm s}$	509.1738	$16.47~\mathrm{v}$	509.2395	$16.49~\mathrm{v}$	511.1916	16.29 v
483.4159	$16.42~\mathrm{s}$	509.1753	$16.44~\mathrm{v}$	509.2410	$16.52~\mathrm{v}$	511.1927	$16.31~\mathrm{v}$
483.4234	$16.43~\mathrm{s}$	509.1767	16.42 v	509.2425	16.51 v	511.1938	$16.29~\mathrm{v}$
484.3381	$16.25~\mathrm{s}$	509.1782	$16.48~\mathrm{v}$	509.2439	$16.50~\mathrm{v}$	511.1948	$16.22~\mathrm{v}$
484.3481	$16.32~{\rm s}$	509.1796	$16.45~\mathrm{v}$	509.2454	$16.52~\mathrm{v}$	511.1959	$16.17~\mathrm{v}$
484.3556	$16.30 \mathrm{\ s}$	509.1811	16.39 v	509.2477	16.56 v	511.1970	16.16 v

Table 5. Continued.

JD*	В	JD*	В	JD*	В	JD*	В
511.1981	16.17 v	511.2472	$16.46~\mathrm{v}$	513.2396	$16.65~\mathrm{v}$	514.1988	16.66 v
511.1992	$16.22~\mathrm{v}$	511.2482	$16.54~\mathrm{v}$	513.2420	$16.72~\mathrm{v}$	514.2011	$16.68~\mathrm{v}$
511.2003	$16.25~\mathrm{v}$	511.2493	$16.59~\mathrm{v}$	513.2445	$16.71~\mathrm{v}$	514.2034	$16.69~\mathrm{v}$
511.2014	16.31 v	511.2504	$16.56~\mathrm{v}$	513.2469	$16.61~\mathrm{v}$	514.2056	16.66 v
511.2025	$16.40~\mathrm{v}$	511.2515	$16.52~\mathrm{v}$	513.2494	$16.54~\mathrm{v}$	514.2079	$16.62~\mathrm{v}$
511.2036	$16.41~\mathrm{v}$	511.2525	$16.59~\mathrm{v}$	513.2518	$16.50~\mathrm{v}$	514.2102	$16.57~\mathrm{v}$
511.2046	$16.46~\mathrm{v}$	511.2536	$16.53~\mathrm{v}$	513.2543	$16.63~\mathrm{v}$	514.2124	$16.58~\mathrm{v}$
511.2057	$16.43~\mathrm{v}$	513.1411	$16.70~\mathrm{v}$	513.2567	$16.61~\mathrm{v}$	514.2147	$16.73~\mathrm{v}$
511.2068	$16.43~\mathrm{v}$	513.1454	$16.50~\mathrm{v}$	513.2592	$16.58~\mathrm{v}$	514.2169	$16.80~\mathrm{v}$
511.2079	$16.40~\mathrm{v}$	513.1488	$16.53~\mathrm{v}$	513.2616	$16.51~\mathrm{v}$	514.2192	$16.82~\mathrm{v}$
511.2090	$16.40~\mathrm{v}$	513.1513	$16.51~\mathrm{v}$	513.2641	$16.52~\mathrm{v}$	514.2215	16.79 v
511.2101	$16.38~\mathrm{v}$	513.1537	$16.53~\mathrm{v}$	513.2673	$16.57~\mathrm{v}$	514.2237	$16.85~\mathrm{v}$
511.2112	$16.36~\mathrm{v}$	513.1562	$16.46~\mathrm{v}$	513.2722	$16.61~\mathrm{v}$	514.2260	16.79 v
511.2123	$16.36~\mathrm{v}$	513.1586	$16.59~\mathrm{v}$	513.2747	$16.45~\mathrm{v}$	514.2283	$16.69~\mathrm{v}$
511.2134	$16.39~\mathrm{v}$	513.1611	$16.47~\mathrm{v}$	513.2771	$16.67~\mathrm{v}$	514.2305	$16.73~\mathrm{v}$
511.2144	$16.34~\mathrm{v}$	513.1635	$16.54~\mathrm{v}$	513.2820	$16.42~\mathrm{v}$	514.2328	$16.78~\mathrm{v}$
511.2155	$16.43~\mathrm{v}$	513.1660	$16.52~\mathrm{v}$	513.2845	$16.36~\mathrm{v}$	514.2350	$16.80~\mathrm{v}$
511.2166	$16.37~\mathrm{v}$	513.1684	$16.56~\mathrm{v}$	513.2869	$16.51~\mathrm{v}$	514.2373	$16.81~\mathrm{v}$
511.2177	$16.40~\mathrm{v}$	513.1709	$16.60~\mathrm{v}$	513.2894	$16.75~\mathrm{v}$	514.2396	$16.85~\mathrm{v}$
511.2193	$16.35~\mathrm{v}$	513.1733	$16.64~\mathrm{v}$	513.2918	$16.46~\mathrm{v}$	514.2418	$16.83~\mathrm{v}$
511.2204	$16.40~\mathrm{v}$	513.1758	$16.50~\mathrm{v}$	513.2943	$16.44~\mathrm{v}$	514.2441	$16.90~\mathrm{v}$
511.2214	$16.41~\mathrm{v}$	513.1771	$16.56~\mathrm{v}$	514.1399	$16.76~\mathrm{v}$	514.2464	$16.87~\mathrm{v}$
511.2225	16.42 v	513.1808	16.57 v	514.1448	16.72 v	514.2486	16.84 v
511.2236	16.46 v	513.1833	16.52 v	514.1471	16.71 v	514.2509	16.76 v
511.2246	16.43 v	513.1858	16.41 v	514.1494	16.73 v	514.2532	16.71 v
511.2257	16.44 v	513.1882	16.54 v	514.1516	16.77 v	514.2554	16.70 v
511.2268	16.46 v	513.1907	16.53 v	514.1539	16.69 v	514.2577	16.75 v
511.2279	16.46 v	513.1931	16.50 v	514.1562	16.66 v	514.2599	16.78 v
511.2289	16.39 v	513.1956	16.60 v	514.1585	16.69 v	514.2622	16.78 v
511.2300	16.46 v	513.1980	16.59 v	514.1607	16.60 v	514.2645	16.74 v
511.2311	16.44 v	513.2005	16.57 v	514.1630	16.64 v	514.2667	16.78 v
511.2321	16.45 v	513.2029	16.63 v	514.1653	16.68 v	514.2690	16.67 v
511.2332	16.52 v	513.2054	16.57 v	514.1676	16.69 v	514.2713	16.67 v
511.2343	16.46 v	513.2078	16.57 v	514.1699	16.63 v	514.2735	16.61 v
511.2354	16.46 v	513.2126	16.66 v	514.1721	16.66 v	514.2759	16.62 v
511.2364	16.36 v	513.2151	16.70 v	514.1744	16.59 v	514.2782	16.59 v
511.2375	16.42 v	513.2175	16.59 v	514.1767	16.61 v	514.2804	16.67 v
511.2386	16.40 v	513.2200	16.60 v	514.1790	16.63 v	514.2827	16.71 v
511.2397	16.39 v	513.2224	16.65 v	514.1813	16.67 v	514.2850	16.80 v
511.2407	16.33 v	513.2249	16.63 v	514.1835	16.74 v	514.2873	16.83 v
511.2418	16.42 v	513.2273	16.63 v	514.1858	16.68 v	514.2896	16.81 v
511.2429	16.44 v	513.2298	16.65 v	514.1881	16.66 v	514.2918	16.82 v
511.2439	16.52 v	513.2322	16.69 v	514.1904	16.70 v	514.2941	16.80 v
511.2450	16.50 v	513.2347	16.67 v	514.1927	16.65 v	514.2964	16.82 v
511.2461	16.51 v	513.2371	16.67 v	514.1965	16.64 v	514.2987	16.80 v

JD^*	B	JD*	B	JD*	B	JD^*	B
514.3010	16.74 v	515.2855	$16.15~\mathrm{s}$	515.3376	$16.08~{\rm s}$	521.3068	$16.27~\mathrm{s}$
514.3032	$16.72~\mathrm{v}$	515.2907	$16.09~\mathrm{s}$	515.3480	$15.99~\mathrm{s}$	521.3226	$16.34~\mathrm{s}$
514.3055	$16.62~\mathrm{v}$	515.3011	$16.20~\mathrm{s}$	521.2585	$16.54~\mathrm{s}$	655.6220	$16.49~\mathrm{s}$
514.3476	$16.83~\mathrm{v}$	515.3115	$16.23~\mathrm{s}$	521.2742	$16.36~{\rm s}$	657.6230	$16.45~\mathrm{s}$
515.2750	$16.17~\mathrm{s}$	515.3219	$16.11~\mathrm{s}$	521.2904	$16.28~\mathrm{s}$	662.6187	$16.27~\mathrm{s}$

Table 5. Continued.

Table 6. V magnitudes of DNP2010. The symbols after magnitudes are explained in Table 2. $JD_{hel}=JD^*$ + 2455000.

JD*	V	JD*	V	JD^*	V	JD*	V
338.4773	$10.80~{\rm s}$	338.5069	$10.79~\mathrm{s}$	338.5254	$10.80~{\rm s}$	338.5365	$10.81 \mathrm{~s}$
338.4782	$10.78~{\rm s}$	338.5072	$10.78~{\rm s}$	338.5257	$10.79~\mathrm{s}$	338.5368	$10.80~{\rm s}$
338.4793	$10.80~{\rm s}$	338.5075	$10.77~\mathrm{s}$	338.5259	$10.79~\mathrm{s}$	338.5370	$10.81~{\rm s}$
338.4799	$10.83~{\rm s}$	338.5078	$10.76~{\rm s}$	338.5262	$10.80~{\rm s}$	338.5373	$10.81~{\rm s}$
338.4821	$10.76~\mathrm{s}$	338.5081	$10.79~\mathrm{s}$	338.5266	$10.80~{\rm s}$	338.5376	$10.80~{\rm s}$
338.4849	$10.79~\mathrm{s}$	338.5086	$10.75~\mathrm{s}$	338.5268	$10.79~\mathrm{s}$	338.5379	$10.82~{\rm s}$
338.4857	$10.79~\mathrm{s}$	338.5092	$10.77~\mathrm{s}$	338.5271	$10.79~\mathrm{s}$	338.5382	$10.81~{\rm s}$
338.4862	$10.81~{\rm s}$	338.5095	$10.75~\mathrm{s}$	338.5274	$10.80~{\rm s}$	338.5388	$10.81~{\rm s}$
338.4865	$10.81~{\rm s}$	338.5098	$10.75~\mathrm{s}$	338.5280	$10.79~\mathrm{s}$	338.5394	$10.81~{\rm s}$
338.4868	$10.81~{\rm s}$	338.5101	$10.69~\mathrm{s}$	338.5286	$10.78~{\rm s}$	338.5397	$10.81~{\rm s}$
338.4873	$10.83~{\rm s}$	338.5107	$10.68~{\rm s}$	338.5289	$10.79~\mathrm{s}$	338.5400	$10.81~{\rm s}$
338.4879	$10.83~{\rm s}$	338.5110	$10.65~{\rm s}$	338.5292	$10.80~{\rm s}$	338.5403	$10.81~{\rm s}$
338.4882	$10.81~{\rm s}$	338.5112	$10.74~\mathrm{s}$	338.5298	$10.79~\mathrm{s}$	338.5406	$10.82~{\rm s}$
338.4885	$10.78~{\rm s}$	338.5115	$10.73~{\rm s}$	338.5303	$10.81~{\rm s}$	338.5409	$10.82~{\rm s}$
338.4888	$10.79~\mathrm{s}$	338.5118	$10.74~\mathrm{s}$	338.5306	$10.81~{\rm s}$	338.5412	$10.81~{\rm s}$
338.4891	$10.78~{\rm s}$	338.5121	$10.74~\mathrm{s}$	338.5309	$10.81~{\rm s}$	338.5414	$10.81~{\rm s}$
338.4897	$10.80~{\rm s}$	338.5127	$10.72~{\rm s}$	338.5312	$10.82~{\rm s}$	338.5449	$10.80~{\rm s}$
338.4905	$10.79~\mathrm{s}$	338.5133	$10.75~\mathrm{s}$	338.5315	$10.80~{\rm s}$	338.5466	$10.82~{\rm s}$
338.4947	$10.84~\mathrm{s}$	338.5136	$10.75~\mathrm{s}$	338.5318	$10.80~{\rm s}$	338.5475	$10.81~{\rm s}$
338.4953	$10.86~{\rm s}$	338.5139	$10.76~{\rm s}$	338.5321	$10.80~{\rm s}$	338.5479	$10.81~{\rm s}$
338.4970	$10.79~\mathrm{s}$	338.5142	$10.78~{\rm s}$	338.5324	$10.81~{\rm s}$	338.5483	$10.81~{\rm s}$
338.4973	$10.85~{\rm s}$	338.5180	$10.73~{\rm s}$	338.5327	$10.80~{\rm s}$	338.5487	$10.81~{\rm s}$
338.4979	$10.86~{\rm s}$	338.5211	$10.79~\mathrm{s}$	338.5330	$10.82~{\rm s}$	338.5491	$10.81~{\rm s}$
338.4994	$10.84~\mathrm{s}$	338.5219	$10.79~\mathrm{s}$	338.5335	$10.80~{\rm s}$	338.5495	$10.81~{\rm s}$
338.5025	$10.84~\mathrm{s}$	338.5227	$10.77~\mathrm{s}$	338.5341	$10.82~{\rm s}$	338.5499	$10.81~{\rm s}$
338.5030	$10.80~{\rm s}$	338.5233	$10.78~{\rm s}$	338.5344	$10.79~\mathrm{s}$	338.5503	$10.82~{\rm s}$
338.5036	$10.82~{\rm s}$	338.5236	$10.79~\mathrm{s}$	338.5347	$10.80~{\rm s}$	338.5507	$10.80~{\rm s}$
338.5041	$10.81~{\rm s}$	338.5239	$10.78~\mathrm{s}$	338.5350	$10.81~{\rm s}$	338.5511	$10.81~{\rm s}$
338.5046	$10.80~{\rm s}$	338.5242	$10.77~\mathrm{s}$	338.5353	$10.79~\mathrm{s}$	338.5515	$10.81~{\rm s}$
338.5051	$10.78~{\rm s}$	338.5245	$10.79~\mathrm{s}$	338.5356	$10.81~{\rm s}$	338.5519	$10.82~{\rm s}$
338.5057	$10.76~\mathrm{s}$	338.5248	$10.79~\mathrm{s}$	338.5359	$10.80~{\rm s}$	338.5523	$10.82~{\rm s}$
338.5063	$10.78~{\rm s}$	338.5251	$10.79 \mathrm{~s}$	338.5362	$10.81 \mathrm{~s}$	338.5527	$10.83 \mathrm{~s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
338.5531	$10.84 \mathrm{~s}$	340.4668	11.11 s	340.5020	11.08 s	340.5231	11.09 s
338.5536	$10.83 \mathrm{~s}$	340.4680	$11.12 \mathrm{~s}$	340.5028	$11.08 \ s$	340.5239	$11.10 \ s$
338.5540	$10.82 \mathrm{~s}$	340.4696	$11.12 \mathrm{~s}$	340.5032	$11.07 \mathrm{~s}$	340.5247	$11.09 \ s$
338.5544	$10.81 \mathrm{~s}$	340.4704	$11.12 \mathrm{~s}$	340.5037	$11.09 \ s$	340.5251	$11.08 \ s$
338.5548	$10.82 \mathrm{~s}$	340.4709	$11.12 \mathrm{~s}$	340.5041	$11.10 \mathrm{~s}$	340.5255	$11.10 \ s$
338.5552	$10.83 \mathrm{~s}$	340.4713	$11.11 \ s$	340.5045	$11.09 \ s$	340.5260	$11.10 \ s$
338.5556	$10.81 \mathrm{~s}$	340.4721	$11.12 \mathrm{~s}$	340.5049	$11.10 \mathrm{~s}$	340.5264	$11.11 \ s$
338.5560	$10.82 \mathrm{~s}$	340.4733	$11.11 \mathrm{~s}$	340.5057	$11.09 \ s$	340.5272	$11.11 \ s$
338.5564	$10.82 \mathrm{~s}$	340.4745	$11.11 \mathrm{~s}$	340.5065	$11.09 \ s$	340.5284	$11.11 \ s$
338.5568	$10.83~{\rm s}$	340.4753	$11.10 \mathrm{~s}$	340.5069	$11.09 \ s$	340.5296	$11.13 \mathrm{~s}$
338.5572	$10.82 \mathrm{~s}$	340.4757	$11.09 \mathrm{~s}$	340.5073	$11.11 \ s$	340.5308	$11.11 \ s$
338.5576	$10.81 \mathrm{~s}$	340.4765	$11.09 \mathrm{~s}$	340.5077	$11.10 \mathrm{~s}$	340.5320	$11.08~{\rm s}$
338.5580	$10.81 \mathrm{~s}$	340.4777	$11.11 \mathrm{~s}$	340.5081	$11.11 \ s$	340.5332	$11.10 \mathrm{~s}$
338.5585	$10.80~{\rm s}$	340.4786	$11.11 \mathrm{~s}$	340.5089	$11.10~{\rm s}$	340.5340	$11.10~{\rm s}$
338.5589	$10.80~{\rm s}$	340.4794	$11.10~{\rm s}$	340.5097	$11.12~{\rm s}$	340.5349	$11.11 \ {\rm s}$
338.5593	$10.80~{\rm s}$	340.4798	$11.11~{\rm s}$	340.5101	$11.10~{\rm s}$	340.5357	$11.10~{\rm s}$
338.5597	$10.79~\mathrm{s}$	340.4802	$11.11~{\rm s}$	340.5106	$11.11~{\rm s}$	340.5361	$11.11~{\rm s}$
338.5605	$10.79~\mathrm{s}$	340.4810	$11.12~\mathrm{s}$	340.5110	$11.10~{\rm s}$	340.5369	$11.10~{\rm s}$
340.4382	$11.08~{\rm s}$	340.4818	$11.11~{\rm s}$	340.5114	$11.10~{\rm s}$	340.5381	$11.11~{\rm s}$
340.4399	$11.08~{\rm s}$	340.4822	$11.12~{\rm s}$	340.5118	$11.11~{\rm s}$	340.5389	$11.12~{\rm s}$
340.4417	$11.09~{\rm s}$	340.4826	$11.11~{\rm s}$	340.5122	$11.12~{\rm s}$	340.5393	$11.11~{\rm s}$
340.4447	$11.09~{\rm s}$	340.4830	$11.12~{\rm s}$	340.5126	$11.11~{\rm s}$	340.5397	$11.12~{\rm s}$
340.4472	$11.08~{\rm s}$	340.4838	$11.11~{\rm s}$	340.5130	$11.09~{\rm s}$	340.5405	$11.13~{\rm s}$
340.4494	$11.09~{\rm s}$	340.4850	$11.12~{\rm s}$	340.5134	$11.10~{\rm s}$	340.5418	$11.12~\mathrm{s}$
340.4506	$11.07~{\rm s}$	340.4858	$11.13~{\rm s}$	340.5138	$11.10~{\rm s}$	340.5430	$11.13~{\rm s}$
340.4514	$11.08~{\rm s}$	340.4862	$11.12~{\rm s}$	340.5142	$11.11~{\rm s}$	340.5438	$11.13~{\rm s}$
340.4518	$11.08~{\rm s}$	340.4871	$11.11~{\rm s}$	340.5146	$11.12~{\rm s}$	340.5442	$11.12~\mathrm{s}$
340.4526	$11.09~{\rm s}$	340.4883	$11.12~{\rm s}$	340.5150	$11.11 \mathrm{~s}$	340.5446	$11.12~\mathrm{s}$
340.4538	$11.08~{\rm s}$	340.4895	$11.12~{\rm s}$	340.5154	$11.10~{\rm s}$	340.5454	$11.12~\mathrm{s}$
340.4546	$11.09~\mathrm{s}$	340.4903	$11.12~{\rm s}$	340.5158	$11.12~{\rm s}$	340.5462	$11.12~\mathrm{s}$
340.4554	$11.08~{\rm s}$	340.4907	$11.11 \mathrm{~s}$	340.5162	$11.10~{\rm s}$	340.5466	$11.12~\mathrm{s}$
340.4567	$11.10 \mathrm{~s}$	340.4911	11.12 s	340.5166	$11.11 \ s$	340.5470	$11.12 \ s$
340.4575	$11.09 \mathrm{~s}$	340.4915	$11.11 \mathrm{~s}$	340.5170	$11.10 \mathrm{~s}$	340.5474	$11.13 \mathrm{~s}$
340.4579	$11.09~{\rm s}$	340.4919	$11.11~{\rm s}$	340.5174	$11.11 \mathrm{~s}$	340.5482	$11.12~\mathrm{s}$
340.4587	$11.10 \mathrm{~s}$	340.4923	$11.10 \mathrm{~s}$	340.5178	$11.11 \ s$	340.5486	$11.10 \mathrm{~s}$
340.4599	$11.10 \mathrm{~s}$	340.4931	$11.10 \mathrm{~s}$	340.5183	11.12 s	340.5494	$11.10 \mathrm{~s}$
340.4611	$11.11 \ s$	340.4939	$11.10 \mathrm{~s}$	340.5187	11.11 s	340.5507	$11.10 \ s$
340.4619	$11.11 \ s$	340.4944	$11.11 \ s$	340.5191	$11.10 \mathrm{~s}$	340.5519	$11.14 \mathrm{~s}$
340.4623	$11.10 \mathrm{~s}$	340.4952	$11.09~\mathrm{s}$	340.5195	$11.10~{\rm s}$	340.5527	11.15 s
340.4631	$11.10 \mathrm{\ s}$	340.4964	$11.10 \mathrm{\ s}$	340.5199	$11.10 \ s$	340.5543	$11.08 \ s$
340.4640	11.10 s	340.4976	11.11 s	340.5203	11.11 s	340.5555	11.12 s
340.4644	11.11 s	340.4988	11.11 s	340.5211	11.10 s	340.5567	11.10 s
340.4652	11.12 s	340.4996	11.10 s	340.5219	11.10 s	340.5584	11.09 s
340.4660	11.11 s	340.5004	11.10 s	340.5223	11.10 s	340.5602	11.07 s
340.4664	11.11 s	340.5012	$11.09 \ s$	340.5227	11.10 s	340.5616	11.12 s

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
342.4189	11.11 s	342.4709	11.11 s	342.5016	11.11 s	342.5251	11.12 s
342.4247	$11.14~\mathrm{s}$	342.4717	$11.13~{\rm s}$	342.5020	$11.12~{\rm s}$	342.5255	$11.12~\mathrm{s}$
342.4251	$11.14~\mathrm{s}$	342.4721	$11.11 \mathrm{~s}$	342.5025	$11.10~{\rm s}$	342.5259	$11.13 \mathrm{~s}$
342.4259	$11.18~{\rm s}$	342.4725	$11.13 \mathrm{~s}$	342.5029	11.12 s	342.5263	$11.11 \mathrm{~s}$
342.4278	$11.18~{\rm s}$	342.4729	$11.12 \mathrm{~s}$	342.5033	$11.12 \mathrm{~s}$	342.5271	$11.11 \mathrm{~s}$
342.4296	11.15 s	342.4733	11.12 s	342.5038	$11.11 \ s$	342.5279	11.12 s
342.4340	$11.09 \mathrm{\ s}$	342.4737	$11.12 \mathrm{~s}$	342.5042	$11.10 \mathrm{~s}$	342.5283	$11.13 \mathrm{~s}$
342.4348	$11.11 \ s$	342.4745	$11.14 \mathrm{~s}$	342.5046	$11.09 \ s$	342.5291	$11.14 \mathrm{~s}$
342.4352	$11.06 \ s$	342.4753	$11.14 { m s}$	342.5050	$11.10 \ s$	342.5299	$11.15 \ {\rm s}$
342.4352	$11.08 \ s$	342.4762	$11.14 { m s}$	342.5054	$11.08 \ s$	342.5303	$11.15 \mathrm{~s}$
342.4356	11.06 s	342.4770	11.16 s	342.5058	11.10 s	342.5307	$11.13 \mathrm{~s}$
342.4364	11.07 s	342.4774	11.16 s	342.5067	11.11 s	342.5316	11.14 s
342.4377	11.10 s	342.4778	11.17 s	342.5075	11.10 s	342.5324	11.14 s
342.4385	11.06 s	342.4782	11.16 s	342.5079	11.10 s	342.5328	11.17 s
342,4389	11.03 s	342,4790	11.17 s	342.5083	11.11 s	342,5332	11.17 s
342,4393	11.08 s	342.4798	11.15 s	342.5087	11.11 s	342.5340	11.17 s
342,4413	11.06 s	342,4802	11.17 s	342.5091	11.10 s	342,5348	11.18 s
342 4433	11.00 S	342 4806	11.17 s	342 5095	11.10 S	342 5352	11.10 s
342 4445	11.1 <u>2</u> 5	342 4810	11.17 S	3425100	11.11 s	3425356	11.11 B
342.4447	11.10 S	342 4814	11.10 s	342.5100 342.5108	11.11 s	342.5360	11.10 S
342 4458	11.11 5 11.06 s	342 4818	11.17 S	342.5100 342.5116	11.11 s	342.5364	11.17 S
342 4486	11.005	342 4826	11.10 s	342 5120	11.11 S	342 5368	11.10 S
3/2 //08	11.07 S	342.4820	11.10 s	342.5120 342.5124	11.12 S	342.5300 342.5376	11.10 S
342.4490	11.12 5 11 11 c	342.4033 342.4847	11.12 S	342.5124 342.5132	11.11 S	342.5370	11.10 s
342.4520	11.11 S	342.4047	11.10 S	342.5152 342.5145	11.10 s	342.5384	11.10 s
342.4550	11.00 s 11.12 a	342.4051	11.17 S	342.5145 342.5157	11.10 s 11.10 s	342.5303	11.10 S
342.4559	11.10 s 11.10 s	342.4855	11.125 11.12c	342.5157 342.5165	11.10 S	342.5395 342.5307	11.10 s 11.14 s
342.4505	11.10 S	342.4859	11.125 11.12c	342.5105 342.5160	11.00 s 11.00 s	342.5397	11.14.5 11.14.5
342.4507	11.115 11.12a	342.4803 342.4871	11.125 11.11c	342.5109 342.5174	11.09 S	342.5401 342.5405	11.14.5 11.19.a
242.4571	$11.10 \ s$ $11 \ 10 \ c$	242.4071	11.115 11.11c	242.5174 242.5179	11.09 S	342.5405 242.5400	11.125 11.12c
342.4373 349 4570	11.10 S	042.4019 219 1007	11.11 S	042.0170 949 5100	11.09 S	042.0409 949 5419	11.12 S
342.4019 349 1509	11.09 S	042.4001 212 100C	11.11 S	042.0102 249 5106	11.11 S	042.0410 249 5491	11.10 S
942.4909 949 4587	11.11 S	342.4090 349.4000	11.10 S	942.9100 949 5100	11.10 S	342.3421	11.11 S
942.4001 249.4505	11.11 S	242.4900 242.4900	11.10 S	949 5104	11.12 S 11.10 ~	949 5499	11.12 S 11.10 ~
042.4090 240 4607	11.10 S	042.4904 240 4000	11.14 S	342.3194 249 E100	11.10 S	342.3433 249 = 497	11.12 S
042.4007 240 4604	11.14 S	042.4908 240-4010	11.10 S	342.3198 249 5000	11.12 S	342.3431 249 = 111	11.12 S
542.4024 249.4640	11.11 S	342.4912	11.15 S	342.52U2	11.12 S	342.3441 242 5445	11.12 S
342.4040	11.11 S	342.4920	11.14 S	342.5200 249 5910	11.12 S	342.3443 242 5440	11.11 S
342.4052	11.12 S	342.4928	11.12 S	342.5210	11.12 S	342.5449	11.11 S
342.4660	11.13 s	342.4932	11.10 s	342.5214	11.10 s	342.5453	11.11 S
342.4064	11.10 s	342.4936	11.10 s	342.5218	11.11 S	342.5457	11.11 S
342.4672	11.09 s	342.4955	11.10 s	342.5222	11.10 s	342.5461	11.12 s
342.4685	11.12 s	342.4974	11.08 s	342.5226	11.10 s	342.5470	11.12 s
342.4693	11.10 s	342.5000	11.11 s	342.5235	11.12 s	342.5478	11.12 s
342.4697	11.10 s	342.5008	11.10 s	342.5243	11.12 s	342.5482	11.10 s
342.4701	11.12 s	342.5012	11.10 s	342.5247	11.11 s	342.5486	11.11 s

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
342.5490	11.11 s	346.4069	$11.35~\mathrm{s}$	346.4341	11.39 s	350.3918	$14.32 \ { m s}$
342.5498	$11.09~{\rm s}$	346.4073	$11.35~{\rm s}$	346.4347	$11.39~{\rm s}$	350.3924	$14.35~\mathrm{s}$
342.5506	$11.10~{\rm s}$	346.4077	$11.35~{\rm s}$	346.4353	$11.39~{\rm s}$	350.3930	$14.28~\mathrm{s}$
342.5510	$11.12~{\rm s}$	346.4082	$11.35~{\rm s}$	346.4359	$11.39~{\rm s}$	350.3965	$14.31~{\rm s}$
342.5514	$11.12~{\rm s}$	346.4086	$11.33~{\rm s}$	346.4365	$11.40~\mathrm{s}$	350.3976	$14.30~\mathrm{s}$
342.5522	$11.12~{\rm s}$	346.4090	$11.31~{\rm s}$	346.4370	$11.39~{\rm s}$	350.3999	$14.31~\mathrm{s}$
342.5530	$11.11 \mathrm{~s}$	346.4094	$11.34~{\rm s}$	346.4376	$11.37~{\rm s}$	350.4009	$14.35~\mathrm{s}$
342.5538	$11.10~{\rm s}$	346.4098	$11.32~{\rm s}$	346.4382	$11.38~{\rm s}$	350.4045	$14.41~\mathrm{s}$
342.5546	11.12 s	346.4102	$11.33 \mathrm{~s}$	346.4388	$11.40 \mathrm{~s}$	350.4057	$14.48~\mathrm{s}$
342.5555	$11.12~{\rm s}$	346.4106	$11.33~{\rm s}$	346.4394	$11.40~{\rm s}$	350.4088	$14.42~\mathrm{s}$
342.5563	$11.14~\mathrm{s}$	346.4110	$11.34~{\rm s}$	346.4399	$11.40~{\rm s}$	350.4096	$14.40~\mathrm{s}$
342.5567	$11.14~\mathrm{s}$	346.4114	$11.32~{\rm s}$	346.4405	$11.38~{\rm s}$	350.4186	$14.25~\mathrm{s}$
342.5571	$11.14~\mathrm{s}$	346.4118	$11.35~{\rm s}$	346.4411	$11.40~{\rm s}$	350.4239	$14.22~\mathrm{s}$
342.5575	$11.14~\mathrm{s}$	346.4122	$11.34~{\rm s}$	346.4417	$11.40~{\rm s}$	350.4246	$14.20~\mathrm{s}$
342.5579	$11.14~\mathrm{s}$	346.4126	$11.34~\mathrm{s}$	346.4422	$11.38~{\rm s}$	350.4254	$14.18~\mathrm{s}$
342.5583	$11.14~\mathrm{s}$	346.4130	$11.35~\mathrm{s}$	346.4428	$11.39~{\rm s}$	350.4262	$14.21~\mathrm{s}$
342.5587	$11.13~{\rm s}$	346.4134	$11.35~{\rm s}$	346.4434	$11.42~\mathrm{s}$	350.4269	$14.16~\mathrm{s}$
342.5591	$11.14~\mathrm{s}$	346.4138	$11.37~{\rm s}$	346.4440	$11.40~{\rm s}$	350.4277	$14.19~\mathrm{s}$
342.5595	$11.12~{\rm s}$	346.4146	$11.31~{\rm s}$	346.4451	$11.30~{\rm s}$	350.4284	$14.20~\mathrm{s}$
342.5599	$11.13~{\rm s}$	346.4159	$11.34~{\rm s}$	346.4469	$11.49~\mathrm{s}$	350.4292	$14.22~\mathrm{s}$
342.5603	$11.14~\mathrm{s}$	346.4167	$11.27~\mathrm{s}$	346.4486	$11.30~{\rm s}$	350.4299	$14.27~\mathrm{s}$
342.5607	$11.15~\mathrm{s}$	346.4171	$11.38~{\rm s}$	346.4503	$11.33~{\rm s}$	350.4307	$14.22~\mathrm{s}$
342.5615	$11.14~\mathrm{s}$	346.4175	$11.35~{\rm s}$	346.4521	$11.24~\mathrm{s}$	350.4314	$14.21~\mathrm{s}$
342.5623	$11.11~{\rm s}$	346.4179	$11.40~{\rm s}$	346.4544	$11.38~{\rm s}$	350.4322	$14.17~\mathrm{s}$
342.5628	$11.10~{\rm s}$	346.4187	$11.31~{\rm s}$	346.4561	$11.32~{\rm s}$	350.4329	$14.18~\mathrm{s}$
342.5632	$11.10~{\rm s}$	346.4195	$11.31~{\rm s}$	346.4579	$11.39~\mathrm{s}$	350.4337	$14.17~\mathrm{s}$
342.5636	$11.10~{\rm s}$	346.4199	$11.32~{\rm s}$	346.4596	$11.40~{\rm s}$	350.4344	$14.19~\mathrm{s}$
342.5640	$11.12~{\rm s}$	346.4207	$11.28~{\rm s}$	346.4613	$11.28~{\rm s}$	350.4359	$14.18~\mathrm{s}$
342.5644	$11.14~\mathrm{s}$	346.4215	$11.38~{\rm s}$	346.4723	$11.27~{\rm s}$	350.4374	$14.19~\mathrm{s}$
342.5648	$11.15~\mathrm{s}$	346.4219	$11.36~{\rm s}$	346.4735	$11.25~\mathrm{s}$	350.4382	$14.15~\mathrm{s}$
342.5652	$11.15~\mathrm{s}$	346.4228	$11.29~\mathrm{s}$	346.4741	$11.33~{\rm s}$	350.4389	$14.15~\mathrm{s}$
342.5660	$11.14~\mathrm{s}$	346.4243	$11.34~{\rm s}$	346.4747	$11.33~{\rm s}$	350.4397	$14.13~\mathrm{s}$
342.5668	$11.14~\mathrm{s}$	346.4255	$11.33~{\rm s}$	346.4753	$11.30~{\rm s}$	350.4412	$14.13~\mathrm{s}$
342.5672	$11.16~{\rm s}$	346.4260	$11.36~{\rm s}$	346.4758	$11.38~{\rm s}$	350.4427	$14.08~\mathrm{s}$
342.5676	$11.14~\mathrm{s}$	346.4266	$11.39~{\rm s}$	346.4764	$11.27~{\rm s}$	350.4435	$14.02~\mathrm{s}$
342.5684	$11.13~{\rm s}$	346.4272	$11.35~{\rm s}$	346.4770	$11.29~{\rm s}$	350.4442	$14.09~\mathrm{s}$
342.5696	$11.13~{\rm s}$	346.4278	$11.40~{\rm s}$	346.4776	$11.33~{\rm s}$	350.4450	$14.17~\mathrm{s}$
342.5709	$11.13~{\rm s}$	346.4284	$11.36~{\rm s}$	346.4781	$11.31~{\rm s}$	350.4457	$14.23~\mathrm{s}$
346.4030	$11.37~\mathrm{s}$	346.4289	$11.33~{\rm s}$	346.4787	$11.33~{\rm s}$	350.4465	$14.28~\mathrm{s}$
346.4036	$11.40~\mathrm{s}$	346.4295	$11.33~{\rm s}$	346.4793	$11.33~{\rm s}$	350.4480	$14.27~\mathrm{s}$
346.4047	$11.36~{\rm s}$	346.4307	$11.36~{\rm s}$	346.4799	$11.32~{\rm s}$	350.4495	$14.34~\mathrm{s}$
346.4053	$11.34~\mathrm{s}$	346.4318	$11.37~{\rm s}$	346.4815	$11.30~{\rm s}$	350.4502	$14.34~\mathrm{s}$
346.4057	$11.36~\mathrm{s}$	346.4324	$11.38~{\rm s}$	346.4833	$11.34~\mathrm{s}$	350.4510	$14.30~\mathrm{s}$
346.4061	$11.35~{\rm s}$	346.4330	$11.37~{\rm s}$	350.3902	$14.29~\mathrm{s}$	350.4517	$14.29~\mathrm{s}$
346.4065	$11.36~{\rm s}$	346.4336	$11.38~{\rm s}$	350.3912	$14.27~\mathrm{s}$	350.4525	$14.35~\mathrm{s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
350.4532	$14.34 \mathrm{~s}$	353.5291	$14.67~\mathrm{s}$	354.3813	$14.69 \ s$	354.4485	$14.70 \mathrm{~s}$
350.4585	$14.43~\mathrm{s}$	353.5306	$14.66~\mathrm{s}$	354.3822	$14.72~\mathrm{s}$	354.4500	$14.77~\mathrm{s}$
350.4600	$14.41~\mathrm{s}$	353.5312	$14.64~\mathrm{s}$	354.3866	$14.68~\mathrm{s}$	354.4515	$14.76~\mathrm{s}$
350.4623	$14.42~\mathrm{s}$	353.5318	$14.65~\mathrm{s}$	354.3883	$14.69~\mathrm{s}$	354.4523	$14.77~\mathrm{s}$
350.4638	$14.40~\mathrm{s}$	353.5324	$14.67~\mathrm{s}$	354.3907	$14.69~\mathrm{s}$	354.4538	$14.79 \mathrm{~s}$
350.4645	$14.39~\mathrm{s}$	353.5330	$14.67~\mathrm{s}$	354.3924	$14.75 \ s$	354.4553	$14.79 \mathrm{~s}$
350.4653	$14.40~\mathrm{s}$	353.5335	$14.64~\mathrm{s}$	354.3936	$14.76~\mathrm{s}$	354.4561	$14.81~\mathrm{s}$
350.4660	$14.36~\mathrm{s}$	353.5347	$14.65~\mathrm{s}$	354.3941	$14.75 \ s$	354.4568	$14.81~\mathrm{s}$
350.4675	$14.43~\mathrm{s}$	353.5364	$14.59 \mathrm{~s}$	354.3953	$14.74~\mathrm{s}$	354.4576	$14.85~\mathrm{s}$
350.4683	$14.45~\mathrm{s}$	353.5376	$14.61 \ {\rm s}$	354.3980	$14.72~\mathrm{s}$	354.4583	$14.88~\mathrm{s}$
350.4698	$14.44~\mathrm{s}$	353.5382	$14.63~\mathrm{s}$	354.3997	$14.74~\mathrm{s}$	354.4591	$14.85~\mathrm{s}$
350.4713	$14.36~\mathrm{s}$	353.5388	$14.63~\mathrm{s}$	354.4015	$14.77 \ s$	354.4598	$14.85~\mathrm{s}$
350.4720	$14.31~{\rm s}$	353.5393	$14.62~\mathrm{s}$	354.4032	$14.85~\mathrm{s}$	354.4606	$14.84~\mathrm{s}$
350.4751	$14.29~\mathrm{s}$	353.5399	$14.64~\mathrm{s}$	354.4047	$14.86~\mathrm{s}$	354.4618	$14.82~\mathrm{s}$
350.4784	$14.26~\mathrm{s}$	353.5405	$14.68~{\rm s}$	354.4061	$14.89~\mathrm{s}$	354.4636	$14.84~\mathrm{s}$
350.4886	$14.22~\mathrm{s}$	353.5411	$14.70~\mathrm{s}$	354.4073	$14.90~\mathrm{s}$	354.4656	$14.81~\mathrm{s}$
350.4908	$14.24~\mathrm{s}$	353.5417	$14.77~\mathrm{s}$	354.4084	$14.93~\mathrm{s}$	354.4673	$14.84~\mathrm{s}$
350.4957	$14.24~\mathrm{s}$	353.5428	$14.72~\mathrm{s}$	354.4096	$14.93~\mathrm{s}$	354.4688	$14.88~\mathrm{s}$
350.4995	$14.29~\mathrm{s}$	353.5440	$14.75~\mathrm{s}$	354.4102	$14.95~\mathrm{s}$	354.4696	$14.91~\mathrm{s}$
350.5017	$14.28~\mathrm{s}$	353.5445	$14.64~\mathrm{s}$	354.4107	$14.92~\mathrm{s}$	354.4703	$14.94~\mathrm{s}$
350.5093	$14.34~\mathrm{s}$	353.5451	$14.58~\mathrm{s}$	354.4119	$14.97~\mathrm{s}$	354.4711	$15.01~\mathrm{s}$
350.5115	$14.36~\mathrm{s}$	353.5457	$14.58~\mathrm{s}$	354.4136	$14.94~\mathrm{s}$	354.4719	$15.01~{\rm s}$
350.5130	$14.34~\mathrm{s}$	353.5469	$14.59~\mathrm{s}$	354.4154	$14.96~\mathrm{s}$	354.4726	$15.01~\mathrm{s}$
350.5160	$14.35~\mathrm{s}$	353.5486	$14.58~\mathrm{s}$	354.4165	$14.94~\mathrm{s}$	354.4734	$14.95~\mathrm{s}$
350.5205	$14.32~\mathrm{s}$	353.5498	$14.51~\mathrm{s}$	354.4177	$14.94~\mathrm{s}$	354.4749	$14.95~\mathrm{s}$
350.5213	$14.33~\mathrm{s}$	353.5503	$14.44~\mathrm{s}$	354.4194	$14.95~\mathrm{s}$	354.4764	$14.93~\mathrm{s}$
350.5239	$14.28~\mathrm{s}$	353.5509	$14.44~\mathrm{s}$	354.4209	$14.92~\mathrm{s}$	354.4771	$14.90~\mathrm{s}$
350.5281	$14.29~\mathrm{s}$	353.5515	$14.47~\mathrm{s}$	354.4223	$14.87~\mathrm{s}$	354.4779	$14.83~\mathrm{s}$
350.5296	$14.30~\mathrm{s}$	353.5521	$14.49~\mathrm{s}$	354.4240	$14.80~\mathrm{s}$	354.4786	$14.89~\mathrm{s}$
350.5303	$14.25~\mathrm{s}$	353.5526	$14.48~\mathrm{s}$	354.4252	$14.79~\mathrm{s}$	354.4794	$14.91~\mathrm{s}$
350.5409	$14.21~\mathrm{s}$	353.5532	$14.46~\mathrm{s}$	354.4258	$14.76~\mathrm{s}$	354.4801	$14.86~\mathrm{s}$
350.5416	$14.21~\mathrm{s}$	353.5538	$14.44~\mathrm{s}$	354.4269	$14.77~\mathrm{s}$	354.4809	$14.85~\mathrm{s}$
350.5424	$14.21~\mathrm{s}$	353.5544	$14.46~\mathrm{s}$	354.4281	$14.78~\mathrm{s}$	354.4816	$14.77~\mathrm{s}$
350.5439	$14.17~\mathrm{s}$	353.5550	$14.47~\mathrm{s}$	354.4287	$14.78~\mathrm{s}$	354.4824	$14.77~\mathrm{s}$
350.5461	$14.26~\mathrm{s}$	353.5561	$14.47~\mathrm{s}$	354.4298	$14.73~\mathrm{s}$	354.4831	$14.79~\mathrm{s}$
350.5484	$14.22~\mathrm{s}$	353.5579	$14.52~\mathrm{s}$	354.4310	$14.67~\mathrm{s}$	354.4839	$14.79~\mathrm{s}$
353.5190	$14.59~\mathrm{s}$	353.5596	$14.60~\mathrm{s}$	354.4321	$14.70~\mathrm{s}$	354.4846	$14.78~\mathrm{s}$
353.5196	$14.59~\mathrm{s}$	353.5613	$14.59~\mathrm{s}$	354.4353	$14.71~\mathrm{s}$	354.4854	$14.77~\mathrm{s}$
353.5202	$14.60~\mathrm{s}$	353.5631	$14.57~\mathrm{s}$	354.4401	$14.71~\mathrm{s}$	354.4861	$14.79~\mathrm{s}$
353.5208	$14.59~\mathrm{s}$	353.5648	$14.56~\mathrm{s}$	354.4423	$14.70~\mathrm{s}$	354.4869	$14.75~\mathrm{s}$
353.5214	$14.53~\mathrm{s}$	353.5660	$14.49~\mathrm{s}$	354.4434	$14.73~\mathrm{s}$	354.4877	$14.74~\mathrm{s}$
353.5219	$14.52~\mathrm{s}$	353.5673	$14.50~\mathrm{s}$	354.4452	$14.67~\mathrm{s}$	354.4884	$14.75~\mathrm{s}$
353.5225	$14.56~\mathrm{s}$	353.5690	$14.51~\mathrm{s}$	354.4463	$14.75~\mathrm{s}$	354.4892	$14.73~\mathrm{s}$
353.5231	$14.64~\mathrm{s}$	353.5713	$14.60~\mathrm{s}$	354.4469	$14.74~\mathrm{s}$	354.4899	$14.74~\mathrm{s}$
353.5252	$14.66~\mathrm{s}$	353.5731	$14.57~\mathrm{s}$	354.4478	$14.71~\mathrm{s}$	354.4914	$14.71~\mathrm{s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
354.4929	$14.73~\mathrm{s}$	354.5298	$14.87~\mathrm{s}$	357.4931	$15.08~\mathrm{s}$	358.4158	$15.22~\mathrm{s}$
354.4944	$14.72~\mathrm{s}$	354.5305	$14.88~\mathrm{s}$	357.4952	$14.94~\mathrm{s}$	358.4180	$15.21~\mathrm{s}$
354.4959	$14.72~\mathrm{s}$	354.5313	$14.87~\mathrm{s}$	357.4952	$14.94~\mathrm{s}$	358.4202	$15.25~\mathrm{s}$
354.4974	$14.73~\mathrm{s}$	354.5320	$14.86~\mathrm{s}$	357.5011	$14.87~\mathrm{s}$	358.4224	$15.20~\mathrm{s}$
354.4989	$14.75~\mathrm{s}$	354.5335	$14.84~\mathrm{s}$	357.5034	$14.82~\mathrm{s}$	358.4235	$15.17~\mathrm{s}$
354.4997	$14.75~\mathrm{s}$	354.5350	$14.84~\mathrm{s}$	357.5056	$14.84~\mathrm{s}$	358.4246	$15.16~\mathrm{s}$
354.5004	$14.75~\mathrm{s}$	354.5358	$14.79~\mathrm{s}$	357.5079	$14.91~\mathrm{s}$	358.4268	$15.02~\mathrm{s}$
354.5012	$14.77~\mathrm{s}$	354.5366	$14.80~\mathrm{s}$	357.5101	$14.86~\mathrm{s}$	358.4301	$15.06~\mathrm{s}$
354.5019	$14.79~\mathrm{s}$	354.5373	$14.80~\mathrm{s}$	357.5124	$14.84~\mathrm{s}$	358.4334	$15.03~\mathrm{s}$
354.5027	$14.77~\mathrm{s}$	354.5381	$14.84~\mathrm{s}$	357.5146	$14.76~\mathrm{s}$	358.4367	$14.99~\mathrm{s}$
354.5035	$14.70~\mathrm{s}$	354.5388	$14.88~\mathrm{s}$	357.5169	$14.72~\mathrm{s}$	358.4400	$14.94~\mathrm{s}$
354.5042	$14.73~\mathrm{s}$	354.5396	$14.85~\mathrm{s}$	357.5192	$14.78~\mathrm{s}$	358.4433	$14.91~{\rm s}$
354.5050	$14.79~\mathrm{s}$	354.5403	$14.88~\mathrm{s}$	357.5214	$14.82~\mathrm{s}$	358.4466	$14.88~\mathrm{s}$
354.5057	$14.83~\mathrm{s}$	354.5411	$14.89~\mathrm{s}$	357.5237	$14.78~\mathrm{s}$	358.4488	$14.80~\mathrm{s}$
354.5065	$14.80~\mathrm{s}$	354.5418	$14.87~\mathrm{s}$	357.5259	$14.82~\mathrm{s}$	358.4532	$14.87~\mathrm{s}$
354.5072	$14.82~\mathrm{s}$	354.5426	$14.82~\mathrm{s}$	357.5282	$14.90~\mathrm{s}$	358.4565	$15.03~\mathrm{s}$
354.5080	$14.82~\mathrm{s}$	354.5433	$14.80~\mathrm{s}$	357.5304	$14.89~\mathrm{s}$	358.4598	$15.05~\mathrm{s}$
354.5087	$14.89~\mathrm{s}$	354.5441	$14.76~\mathrm{s}$	357.5327	$14.85~\mathrm{s}$	358.4631	$15.08~\mathrm{s}$
354.5095	$14.87~\mathrm{s}$	354.5448	$14.80~\mathrm{s}$	357.5350	$14.80~\mathrm{s}$	358.4664	$15.11~\mathrm{s}$
354.5102	$14.88~\mathrm{s}$	354.5456	$14.75~\mathrm{s}$	357.5372	$14.93~\mathrm{s}$	358.4697	$15.16~\mathrm{s}$
354.5110	$14.87~\mathrm{s}$	354.5463	$14.76~\mathrm{s}$	357.5395	$14.90~\mathrm{s}$	358.4728	$15.16~\mathrm{s}$
354.5117	$14.89~\mathrm{s}$	354.5471	$14.75~\mathrm{s}$	357.5417	$14.96~\mathrm{s}$	358.4752	$15.15~\mathrm{s}$
354.5125	$14.91~\mathrm{s}$	354.5478	$14.72~\mathrm{s}$	357.5440	$14.94~\mathrm{s}$	358.4789	$15.15~\mathrm{s}$
354.5132	$14.96~\mathrm{s}$	354.5493	$14.85~\mathrm{s}$	357.5462	$14.93~\mathrm{s}$	358.4816	$15.13~\mathrm{s}$
354.5140	$14.95~\mathrm{s}$	354.5516	$14.81~{\rm s}$	357.5485	$14.87~\mathrm{s}$	358.4827	$15.13~\mathrm{s}$
354.5147	$14.95~\mathrm{s}$	354.5524	$14.81~{\rm s}$	357.5508	$14.85~\mathrm{s}$	358.4838	$15.14~\mathrm{s}$
354.5155	$14.97~\mathrm{s}$	354.5531	$14.79~\mathrm{s}$	357.5530	$14.76~\mathrm{s}$	358.4849	$15.10~\mathrm{s}$
354.5162	$15.00~\mathrm{s}$	354.5539	$14.77~\mathrm{s}$	357.5553	$14.88~\mathrm{s}$	358.4860	$15.08~\mathrm{s}$
354.5170	$15.06~\mathrm{s}$	354.5554	$14.81~{\rm s}$	357.5575	$14.88~\mathrm{s}$	358.4871	$15.06~\mathrm{s}$
354.5177	$14.98~\mathrm{s}$	354.5569	$14.81~{\rm s}$	357.5598	$14.76~\mathrm{s}$	358.4882	$15.01~\mathrm{s}$
354.5185	$15.00~\mathrm{s}$	354.5584	$14.83~\mathrm{s}$	357.5620	$14.86~\mathrm{s}$	358.4904	$15.00~\mathrm{s}$
354.5192	$15.01~\mathrm{s}$	354.5599	$14.84~\mathrm{s}$	357.5643	$14.89~\mathrm{s}$	358.4937	$14.95~\mathrm{s}$
354.5200	$14.99~\mathrm{s}$	354.5606	$14.79~\mathrm{s}$	357.5666	$14.83~\mathrm{s}$	358.4970	$15.00~\mathrm{s}$
354.5208	$15.00~\mathrm{s}$	354.5621	$14.80~\mathrm{s}$	358.4000	$15.13~\mathrm{s}$	358.4992	$15.02~\mathrm{s}$
354.5215	$15.00~\mathrm{s}$	354.5636	$14.74~\mathrm{s}$	358.4014	$15.21 \ s$	358.5003	$15.01 \mathrm{~s}$
354.5223	$15.00~\mathrm{s}$	354.5644	$14.79~\mathrm{s}$	358.4032	$15.26~\mathrm{s}$	358.5025	$14.95~\mathrm{s}$
354.5230	$15.03~\mathrm{s}$	354.5652	$14.80~\mathrm{s}$	358.4048	$15.24~\mathrm{s}$	358.5047	$14.99~\mathrm{s}$
354.5238	$15.06~\mathrm{s}$	354.5666	$14.82~\mathrm{s}$	358.4059	$15.27 \mathrm{~s}$	358.5058	$15.00~\mathrm{s}$
354.5245	$15.04~\mathrm{s}$	354.5682	$14.93~\mathrm{s}$	358.4070	$15.28~\mathrm{s}$	358.5069	$14.98~\mathrm{s}$
354.5253	$15.02~\mathrm{s}$	354.5697	$14.90~\mathrm{s}$	358.4081	$15.24~\mathrm{s}$	358.5080	$15.00~\mathrm{s}$
354.5260	$15.00 \mathrm{~s}$	354.5719	$14.77~\mathrm{s}$	358.4092	$15.27~\mathrm{s}$	358.5091	$15.01 \mathrm{~s}$
354.5268	$14.94 \mathrm{\ s}$	357.4810	$14.98~\mathrm{s}$	358.4103	$15.29 \mathrm{~s}$	358.5102	$15.05 \mathrm{~s}$
354.5275	$14.91~\mathrm{s}$	357.4837	$15.01~\mathrm{s}$	358.4114	$15.31~\mathrm{s}$	358.5113	$15.05~\mathrm{s}$
354.5283	$14.92~\mathrm{s}$	357.4860	$14.97~\mathrm{s}$	358.4125	$15.32 \mathrm{~s}$	358.5124	$15.03~\mathrm{s}$
354.5290	$14.89~\mathrm{s}$	357.4892	$15.03 \mathrm{~s}$	358.4136	$15.28~\mathrm{s}$	358.5135	$15.03 \mathrm{\ s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
358.5146	$15.03 \mathrm{\ s}$	380.4585	$15.45 \mathrm{~s}$	381.4667	$15.78 \mathrm{\ s}$	382.4845	$15.91 \mathrm{~s}$
358.5157	$15.04~\mathrm{s}$	380.4621	$15.56~\mathrm{s}$	381.4696	$15.82~\mathrm{s}$	382.4899	$15.92~\mathrm{s}$
358.5168	$15.07~\mathrm{s}$	380.4639	$15.60 \mathrm{~s}$	381.4711	$15.82~\mathrm{s}$	382.4953	$15.87~\mathrm{s}$
358.5179	$15.10 \mathrm{~s}$	380.4656	$15.64~\mathrm{s}$	381.4725	$15.84~\mathrm{s}$	382.5007	$15.87~\mathrm{s}$
358.5201	$15.05 \mathrm{~s}$	380.4692	$15.77~\mathrm{s}$	381.4740	$15.84~\mathrm{s}$	383.3503	$15.84 \mathrm{~s}$
358.5234	$14.99 \mathrm{\ s}$	380.4746	$15.91 \mathrm{~s}$	381.4766	$15.83 \mathrm{~s}$	383.3521	$15.79 \mathrm{~s}$
358.5256	$15.06 \mathrm{~s}$	380.4800	$15.85~\mathrm{s}$	381.4786	$15.81 \mathrm{~s}$	383.3539	$15.83 \mathrm{~s}$
358.5267	$15.08~{\rm s}$	380.4854	$15.75~\mathrm{s}$	381.4815	$15.76~\mathrm{s}$	383.3557	$15.88~\mathrm{s}$
358.5278	$15.06 \mathrm{~s}$	380.4908	$15.70 \mathrm{~s}$	381.4858	$15.71 \ {\rm s}$	383.3593	$15.97~\mathrm{s}$
358.5289	$15.05~\mathrm{s}$	380.4961	$15.78~\mathrm{s}$	381.4902	$15.71 \ s$	383.3647	$15.94~\mathrm{s}$
358.5300	$15.09 \mathrm{~s}$	380.4997	$15.78~\mathrm{s}$	381.4930	$15.76~\mathrm{s}$	383.3701	$15.99~\mathrm{s}$
358.5311	$15.09 \mathrm{~s}$	380.5015	$15.82~\mathrm{s}$	381.4945	$15.76~\mathrm{s}$	383.3736	$16.02~{\rm s}$
358.5322	$15.05 \mathrm{~s}$	380.5033	$15.87~\mathrm{s}$	381.4974	$15.78~\mathrm{s}$	383.3754	$16.03 \mathrm{~s}$
358.5333	$15.10 \mathrm{~s}$	380.5069	$15.82~\mathrm{s}$	381.5017	$15.87~\mathrm{s}$	383.3790	$15.98~\mathrm{s}$
358.5344	$15.10 \mathrm{~s}$	380.5123	$16.04~\mathrm{s}$	381.5061	$15.84~\mathrm{s}$	383.3844	$16.09 \mathrm{~s}$
358.5355	$15.08~{\rm s}$	380.5177	$15.99 \mathrm{~s}$	381.5090	$15.77~\mathrm{s}$	383.4011	$16.13 \mathrm{~s}$
358.5366	$15.08~\mathrm{s}$	380.5248	$15.90~\mathrm{s}$	381.5119	$15.62~\mathrm{s}$	383.4041	$16.06~{\rm s}$
358.5377	$15.00~{\rm s}$	381.3617	$15.94~\mathrm{s}$	381.5176	$15.80~\mathrm{s}$	383.4059	$15.98~\mathrm{s}$
358.5388	$14.98~\mathrm{s}$	381.3653	$15.92~\mathrm{s}$	381.5234	$15.87~\mathrm{s}$	383.4095	$15.87~\mathrm{s}$
358.5410	$14.96~\mathrm{s}$	381.3671	$15.91~\mathrm{s}$	381.5278	$15.86~\mathrm{s}$	383.4149	$15.86~\mathrm{s}$
358.5432	$14.99~\mathrm{s}$	381.3726	$15.84~\mathrm{s}$	381.5336	$15.70~\mathrm{s}$	383.4203	$15.99~\mathrm{s}$
358.5454	$14.91~\mathrm{s}$	381.3780	$15.81~\mathrm{s}$	381.5393	$15.87~\mathrm{s}$	383.4239	$16.04~\mathrm{s}$
358.5487	$14.95~\mathrm{s}$	381.3841	$15.83~\mathrm{s}$	381.5437	$15.89~\mathrm{s}$	383.4257	$15.99~\mathrm{s}$
358.5509	$14.91~\mathrm{s}$	381.3877	$15.79~\mathrm{s}$	381.5480	$15.89~\mathrm{s}$	383.4275	$16.05~\mathrm{s}$
358.5520	$14.97~\mathrm{s}$	381.3894	$15.80~\mathrm{s}$	381.5524	$15.78~\mathrm{s}$	383.4293	$16.00~{\rm s}$
358.5531	$14.95~\mathrm{s}$	381.3912	$15.82~\mathrm{s}$	381.5582	$15.78~\mathrm{s}$	383.4328	$15.96~\mathrm{s}$
358.5542	$14.97~\mathrm{s}$	381.3948	$15.85~\mathrm{s}$	381.5611	$15.84~\mathrm{s}$	383.4388	$15.99~\mathrm{s}$
358.5564	$14.96~\mathrm{s}$	381.3991	$15.86~\mathrm{s}$	381.5658	$15.82~\mathrm{s}$	383.4450	$16.10~\mathrm{s}$
358.5597	$14.94~\mathrm{s}$	381.4033	$15.84~\mathrm{s}$	382.3746	$16.28~\mathrm{s}$	383.4515	$16.10~\mathrm{s}$
358.5630	$15.02~\mathrm{s}$	381.4088	$15.81~\mathrm{s}$	382.3977	$15.77~\mathrm{s}$	383.4551	$16.05~\mathrm{s}$
358.5663	$14.95~\mathrm{s}$	381.4132	$15.81~\mathrm{s}$	382.3995	$15.79~\mathrm{s}$	383.4569	$16.03~{\rm s}$
358.5701	$15.09~\mathrm{s}$	381.4161	$15.83~\mathrm{s}$	382.4013	$15.71~\mathrm{s}$	383.4587	$16.05~{\rm s}$
380.3695	$15.93~\mathrm{s}$	381.4175	$15.87~\mathrm{s}$	382.4031	$15.75~\mathrm{s}$	383.4605	$16.06~{\rm s}$
380.3722	$15.88~\mathrm{s}$	381.4190	$15.86~\mathrm{s}$	382.4057	$15.89~\mathrm{s}$	383.4623	$16.00~\mathrm{s}$
380.3761	$15.79~\mathrm{s}$	381.4219	$15.80~\mathrm{s}$	382.4479	$16.07~\mathrm{s}$	383.4640	$15.99~\mathrm{s}$
380.3780	$15.81~\mathrm{s}$	381.4262	$15.73~\mathrm{s}$	382.4515	$16.09~\mathrm{s}$	383.4658	$15.98~\mathrm{s}$
380.3813	$15.79~\mathrm{s}$	381.4306	$15.76~\mathrm{s}$	382.4551	$16.11~{\rm s}$	383.4676	$16.10~{\rm s}$
380.3831	$15.75~\mathrm{s}$	381.4349	$15.75~\mathrm{s}$	382.4587	$16.00~\mathrm{s}$	383.4694	$16.10~{\rm s}$
380.3867	$15.67~\mathrm{s}$	381.4392	$15.76~\mathrm{s}$	382.4623	$15.98~\mathrm{s}$	383.4712	$16.13~{\rm s}$
380.3921	$15.65~\mathrm{s}$	381.4436	$15.76~\mathrm{s}$	382.4658	$15.91~\mathrm{s}$	383.4730	$16.10~\mathrm{s}$
380.3957	$15.59~\mathrm{s}$	381.4479	$15.79~\mathrm{s}$	382.4694	$15.92~\mathrm{s}$	383.4748	$16.14~\mathrm{s}$
380.4028	$15.78~\mathrm{s}$	381.4523	$15.79~\mathrm{s}$	382.4712	$15.79~\mathrm{s}$	383.4766	$16.16~\mathrm{s}$
380.4333	$15.61~\mathrm{s}$	381.4566	$15.72~\mathrm{s}$	382.4730	$15.78~\mathrm{s}$	383.4784	$16.18~\mathrm{s}$
380.4477	$15.58~\mathrm{s}$	381.4609	$15.77~\mathrm{s}$	382.4755	$15.78~\mathrm{s}$	383.4802	$16.17~\mathrm{s}$
380.4531	$15.60~\mathrm{s}$	381.4638	$15.76~\mathrm{s}$	382.4791	$15.76~\mathrm{s}$	383.4820	$16.16 \mathrm{\ s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
383.4838	$16.10~{\rm s}$	385.5575	$15.97~\mathrm{s}$	387.4779	$16.18~{\rm s}$	388.4306	$15.96~\mathrm{s}$
383.4856	$16.06~{\rm s}$	385.5611	$16.06~{\rm s}$	387.4794	$16.20~\mathrm{s}$	388.4343	$15.99~\mathrm{s}$
383.4874	$16.07~{\rm s}$	385.5629	$16.06~{\rm s}$	387.4808	$16.19~\mathrm{s}$	388.4381	$15.96~\mathrm{s}$
383.4892	$16.00~{\rm s}$	385.5647	$15.91~\mathrm{s}$	387.4823	$16.16~\mathrm{s}$	388.4418	$15.97~\mathrm{s}$
383.4910	$15.98~\mathrm{s}$	385.5665	$15.83~\mathrm{s}$	387.4852	$16.20~\mathrm{s}$	388.4456	$15.93~\mathrm{s}$
383.4928	$16.04~\mathrm{s}$	385.5683	$15.68~\mathrm{s}$	387.4881	$16.20~\mathrm{s}$	388.4493	$15.86~\mathrm{s}$
383.4946	$16.04~\mathrm{s}$	385.5701	$15.82~\mathrm{s}$	387.4895	$16.23~\mathrm{s}$	388.4531	$15.83~\mathrm{s}$
383.4963	$16.14~\mathrm{s}$	385.5719	$16.04~\mathrm{s}$	387.4909	$16.17~\mathrm{s}$	388.4568	$15.78~\mathrm{s}$
383.4981	$16.12~\mathrm{s}$	385.5737	$16.09~\mathrm{s}$	387.4924	$16.15~\mathrm{s}$	388.4624	$15.84~\mathrm{s}$
383.4999	$16.11~\mathrm{s}$	385.5755	$15.87~\mathrm{s}$	387.4953	$16.13~\mathrm{s}$	388.4670	$15.79~\mathrm{s}$
383.5053	$16.05~\mathrm{s}$	387.3635	$16.01~{\rm s}$	387.5024	$16.24~\mathrm{s}$	388.4805	$15.74~\mathrm{s}$
383.5107	$16.11~\mathrm{s}$	387.3653	$16.07~\mathrm{s}$	387.5053	$16.24~\mathrm{s}$	388.4880	$15.78~\mathrm{s}$
385.4654	$16.07~\mathrm{s}$	387.3671	$16.13~\mathrm{s}$	387.5068	$16.29~\mathrm{s}$	388.4918	$15.82~\mathrm{s}$
385.4683	$16.08~{\rm s}$	387.3689	$16.14~\mathrm{s}$	387.5082	$16.26~\mathrm{s}$	388.4955	$15.83~\mathrm{s}$
385.4701	$16.13 \mathrm{~s}$	387.3707	$16.12~\mathrm{s}$	387.5109	$16.10~\mathrm{s}$	388.4993	$15.82~\mathrm{s}$
385.4729	$16.18~{\rm s}$	387.3744	$16.11~{\rm s}$	387.5135	$16.14~\mathrm{s}$	388.5030	$15.79~\mathrm{s}$
385.4756	$16.18~{\rm s}$	387.3776	$16.13 \mathrm{~s}$	387.5182	$16.15 \mathrm{~s}$	388.5135	$15.72~\mathrm{s}$
385.4774	$16.10~\mathrm{s}$	387.3803	$16.12~\mathrm{s}$	387.5225	$16.19~\mathrm{s}$	388.5306	$15.58~\mathrm{s}$
385.4792	$16.14~\mathrm{s}$	387.3835	$16.07~{\rm s}$	387.5254	$16.18~{\rm s}$	388.5374	$15.87~\mathrm{s}$
385.4809	$16.06~{\rm s}$	387.3863	$16.05~{\rm s}$	387.5283	$16.21 \mathrm{~s}$	388.5408	$15.82~\mathrm{s}$
385.4827	$16.01~{\rm s}$	387.3895	$16.15 \mathrm{~s}$	387.5326	$16.21 \mathrm{~s}$	388.5442	$15.89~\mathrm{s}$
385.4845	$16.09~\mathrm{s}$	387.3922	$16.23~\mathrm{s}$	387.5370	$16.14~\mathrm{s}$	388.5476	$15.94~\mathrm{s}$
385.4863	$16.10~{\rm s}$	387.3954	$16.26~\mathrm{s}$	387.5399	$16.14 \mathrm{~s}$	388.5510	$15.89~\mathrm{s}$
385.4881	$16.00 \mathrm{~s}$	387.3981	$16.23 \mathrm{~s}$	387.5428	$16.02 \mathrm{~s}$	388.5544	$15.86 \mathrm{~s}$
385.4917	$15.95 \mathrm{~s}$	387.4013	$16.24 \mathrm{\ s}$	387.5471	$16.09 \mathrm{\ s}$	388.5578	$15.85 \mathrm{~s}$
385.4953	$15.97 \mathrm{~s}$	387.4040	$16.11 \mathrm{~s}$	387.5514	$16.14 \mathrm{~s}$	388.5612	$15.83 \mathrm{~s}$
385.4989	$16.02 \mathrm{~s}$	387.4072	$16.03 \mathrm{\ s}$	388.3614	$15.78 \mathrm{\ s}$	388.5646	$15.84~\mathrm{s}$
385.5025	$16.07 \mathrm{~s}$	387.4131	$16.09 \mathrm{~s}$	388.3628	15.82 s	388.5692	$15.89 \mathrm{~s}$
385.5061	$15.98 \mathrm{\ s}$	387.4190	$16.11 \mathrm{~s}$	388.3668	$15.84 \mathrm{~s}$	388.5714	$16.04 \mathrm{\ s}$
385.5096	$16.00 \mathrm{~s}$	387.4217	$16.13 \mathrm{~s}$	388.3705	$15.86 \ s$	388.5758	$15.88 \mathrm{~s}$
385.5114	$16.04 \mathrm{~s}$	387.4276	$16.18 \mathrm{\ s}$	388.3743	$15.84 \mathrm{~s}$	389.3996	$16.06 \mathrm{\ s}$
385.5151	$16.10 \mathrm{~s}$	387.4336	$16.21 \mathrm{\ s}$	388.3780	$15.90 \mathrm{~s}$	389.4039	$15.99 \mathrm{~s}$
385.5203	$16.17 \mathrm{~s}$	387.4369	$16.13 \mathrm{\ s}$	388.3818	$15.86 \ s$	389.4095	$16.01 \ {\rm s}$
385.5252	$16.04 \mathrm{\ s}$	387.4456	$16.13 \mathrm{~s}$	388.3855	$15.89 \mathrm{~s}$	389.4133	$16.01 \mathrm{\ s}$
385.5288	$16.04 \mathrm{~s}$	387.4475	$16.18 \mathrm{\ s}$	388.3893	$15.83 \mathrm{~s}$	389.4170	$15.95 \mathrm{~s}$
385.5324	$16.08 \mathrm{\ s}$	387.4504	$16.19 \mathrm{\ s}$	388.3930	$15.76 \ s$	389.4208	$15.99 \mathrm{~s}$
385.5360	$16.04 \ {\rm s}$	387.4548	$16.20 \mathrm{~s}$	388.3968	15.74 s	389.4283	$16.00 \ s$
385.5378	$16.08 \ s$	387.4591	$16.19 \ s$	388.4005	15.77 s	389.4358	15.87 s
385.5396	16.07 s	387.4620	16.18 s	388.4043	15.77 s	389.4396	15.89 s
385.5414	16.08 s	387.4635	16.18 s	388.4080	15.76 s	389.4474	15.86 s
385.5432	16.04 s	387.4664	16.15 s	388.4118	15.79 s	389.4549	15.85 s
385.5468	16.00 s	387.4692	16.11 s	388.4155	15.77 s	389.4587	15.83 s
385.5503	15.89 s	387.4707	16.09 s	388.4193	15.80 s	389.4624	15.79 s
385.5521	15.98 s	387.4721	16.10 s	388.4230	15.79 s	389.4662	15.69 s
385.5539	$16.00 \mathrm{\ s}$	387.4750	$16.18 \ { m s}$	388.4268	$15.89 \ s$	389.4699	$15.50 \mathrm{\ s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
389.4737	$15.70~\mathrm{s}$	390.5335	$15.82~\mathrm{s}$	434.4124	$16.06~{\rm s}$	454.3752	$15.92 \ a$
389.4774	$15.80~\mathrm{s}$	390.5410	$15.74~\mathrm{s}$	434.4229	$15.97~\mathrm{s}$	454.3777	$15.91 \ a$
389.4812	$15.84~\mathrm{s}$	390.5523	$15.74~\mathrm{s}$	434.4281	$16.07~\mathrm{s}$	454.3802	$15.99 \ a$
389.4887	$15.82~\mathrm{s}$	390.5635	$15.78~\mathrm{s}$	434.4334	$15.98~\mathrm{s}$	454.3827	$16.07 \ a$
389.4962	$15.68~\mathrm{s}$	390.5728	$15.78~\mathrm{s}$	434.4386	$15.88~\mathrm{s}$	454.3852	$15.99 \ a$
389.5000	$15.71~\mathrm{s}$	391.5017	$15.79~\mathrm{s}$	434.4439	$15.91~\mathrm{s}$	454.3877	$16.04 \ a$
389.5037	$15.77~\mathrm{s}$	391.5129	$15.82~\mathrm{s}$	434.4528	$15.90~\mathrm{s}$	454.3908	$15.97 \ a$
389.5127	$15.84~\mathrm{s}$	391.5204	$15.91~\mathrm{s}$	434.4580	$16.04~\mathrm{s}$	454.3933	$16.02~\mathrm{a}$
389.5202	$15.88~\mathrm{s}$	391.5242	$15.91~\mathrm{s}$	434.4633	$16.02~\mathrm{s}$	454.3958	$16.03 \ a$
389.5240	$15.90~\mathrm{s}$	391.5279	$15.91~\mathrm{s}$	434.4685	$16.00~\mathrm{s}$	454.3983	$16.06 \ a$
389.5277	$15.90~\mathrm{s}$	391.5317	$16.01~\mathrm{s}$	434.4738	$15.95~\mathrm{s}$	454.4008	$15.97 \ a$
389.5315	$15.90~\mathrm{s}$	391.5355	$16.00~\mathrm{s}$	434.4790	$15.89~\mathrm{s}$	454.4033	$15.94~\mathrm{a}$
389.5427	$15.90~\mathrm{s}$	391.5430	$15.90~\mathrm{s}$	434.4843	$16.03~\mathrm{s}$	454.4058	$15.94 \ a$
389.5502	$15.86~\mathrm{s}$	391.5505	$15.93~\mathrm{s}$	434.4895	$16.04~\mathrm{s}$	454.4083	$16.02~\mathrm{a}$
389.5577	$15.81~\mathrm{s}$	391.5542	$15.90~\mathrm{s}$	434.4948	$15.97~\mathrm{s}$	454.4108	$15.97 \ a$
389.5663	$15.77~\mathrm{s}$	391.5580	$15.93~\mathrm{s}$	434.5000	$15.93~\mathrm{s}$	454.4134	$16.07 \ a$
389.5696	$15.73 \mathrm{\ s}$	391.5617	$15.95~\mathrm{s}$	434.5053	$16.03~{\rm s}$	455.3923	$16.09 \ a$
389.5729	$15.78~\mathrm{s}$	399.3941	$15.85~\mathrm{s}$	434.5107	$16.07~\mathrm{s}$	455.3985	$16.11 \ a$
390.3451	$15.89~\mathrm{s}$	399.4030	$15.93~\mathrm{s}$	434.5144	$16.08~{\rm s}$	455.4023	$16.05 \ a$
390.3562	$15.90~\mathrm{s}$	399.4068	$15.93~\mathrm{s}$	434.5182	$16.01 \mathrm{~s}$	455.4108	$15.92 \ a$
390.3650	$15.89~\mathrm{s}$	399.4105	$15.93~\mathrm{s}$	434.5219	$15.96~\mathrm{s}$	455.4183	$15.89 \ a$
390.3688	$15.97~\mathrm{s}$	399.4143	$15.95~\mathrm{s}$	434.5257	$15.92~\mathrm{s}$	455.4233	$15.97 \ a$
390.3763	$15.92~\mathrm{s}$	399.4180	$15.92~\mathrm{s}$	434.5295	$15.97~\mathrm{s}$	455.4283	$16.02 \ a$
390.3801	$15.85~\mathrm{s}$	399.4256	$15.91 \mathrm{~s}$	434.5332	$16.00~\mathrm{s}$	455.4333	$16.07 \ a$
390.3876	$15.83~\mathrm{s}$	399.4368	$15.84~\mathrm{s}$	434.5370	$15.92 \mathrm{~s}$	455.4439	16.11 a
390.3951	$15.90~\mathrm{s}$	399.4443	$15.89~\mathrm{s}$	434.5407	$16.12 \mathrm{~s}$	455.4489	$16.30 \ a$
390.3988	$15.96~\mathrm{s}$	399.4518	$15.91~\mathrm{s}$	438.3894	$16.19~\mathrm{s}$	455.4514	$16.29 \ a$
390.4026	$15.95~\mathrm{s}$	399.4593	$15.84~\mathrm{s}$	438.3969	$16.16 \mathrm{~s}$	455.4564	$16.30 \ a$
390.4101	$16.03 \mathrm{\ s}$	399.4631	$15.85 \mathrm{~s}$	438.4007	16.22 s	455.4614	16.33 a
390.4214	$16.01~{\rm s}$	399.4724	$15.97~\mathrm{s}$	438.4044	$16.21 \mathrm{~s}$	459.2637	$16.20 \ a$
390.4326	$16.02~{\rm s}$	399.4836	$16.00~{\rm s}$	438.4082	$16.23 \mathrm{~s}$	459.2699	16.11 a
390.4364	$15.98 \mathrm{\ s}$	399.4949	$16.01 \mathrm{\ s}$	438.4157	$16.14 \mathrm{~s}$	459.2759	16.16 a
390.4439	$15.99 \mathrm{~s}$	399.5024	$15.88 \mathrm{~s}$	438.4232	$16.12 \mathrm{~s}$	459.2815	$16.21 \ a$
390.4551	$16.05~{\rm s}$	399.5061	$15.86~\mathrm{s}$	438.4269	$16.11 \mathrm{~s}$	459.2844	$16.25 \ a$
390.4664	$16.04~\mathrm{s}$	399.5099	$15.85~\mathrm{s}$	454.3438	16.08 a	459.2872	$16.23 \ a$
390.4739	$16.04 \mathrm{~s}$	399.5174	$15.99 \mathrm{~s}$	454.3479	16.08 a	459.2901	16.26 a
390.4776	$16.07 \mathrm{~s}$	399.5286	$16.01 \mathrm{\ s}$	454.3517	16.07 a	459.2958	$16.21 \ a$
390.4814	$16.01 \mathrm{\ s}$	399.5362	$15.94 \mathrm{~s}$	454.3544	16.07 a	459.3015	$16.27 \ a$
390.4930	$15.91 \mathrm{~s}$	399.5399	$15.93 \mathrm{~s}$	454.3575	16.09 a	459.3043	$16.22 \ a$
390.4984	$15.90 \mathrm{~s}$	399.5474	$15.93 \mathrm{~s}$	454.3601	15.98 a	459.3076	16.15 a
390.5012	$15.95~\mathrm{s}$	399.5549	$15.82~\mathrm{s}$	454.3626	16.04 a	459.3105	16.17 a
390.5065	$15.90 \mathrm{~s}$	399.5587	$15.82 \mathrm{~s}$	454.3651	15.99 a	459.3133	$16.21 \ a$
390.5130	$15.87~\mathrm{s}$	399.5624	$15.86~\mathrm{s}$	454.3676	$15.92 \ a$	459.3162	16.16 a
390.5222	$15.81 \mathrm{~s}$	399.5699	$15.82~\mathrm{s}$	454.3701	$15.91 \ a$	459.3190	$16.27 \ a$
390.5297	$15.80~\mathrm{s}$	399.5801	$15.74~\mathrm{s}$	454.3727	$15.85 \ a$	459.3219	$16.18 \ a$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
459.3247	16.16 a	464.3467	$16.31 \ a$	482.2476	$16.28~\mathrm{s}$	484.2555	$16.37~\mathrm{s}$
459.3276	$16.12~\mathrm{a}$	464.3491	$16.26~\mathrm{a}$	482.2517	$16.25~\mathrm{s}$	484.2584	$16.33~{\rm s}$
459.3304	$16.17 \ a$	464.3516	$16.30 \ a$	482.2559	$16.20~\mathrm{s}$	484.2598	$16.24~\mathrm{s}$
459.3333	$16.18 \ a$	464.3541	$16.40~\mathrm{a}$	482.2599	$16.28~\mathrm{s}$	484.2613	$16.28~{\rm s}$
459.3362	$16.24 \ a$	464.3574	$16.37 \ a$	482.2640	$16.36~\mathrm{s}$	484.2642	$16.29~\mathrm{s}$
459.3391	$16.35 \ a$	464.3600	$16.31 \ a$	482.2681	$16.32~\mathrm{s}$	484.2671	$16.31~{\rm s}$
463.2818	$16.10 \ a$	464.3625	$16.34~\mathrm{a}$	482.2722	$16.29~\mathrm{s}$	484.2685	$16.32~\mathrm{s}$
463.2877	$16.14 \ a$	464.3650	$16.37 \ a$	482.2763	$16.25~\mathrm{s}$	484.2714	$16.28~\mathrm{s}$
463.2937	$16.27 \ a$	464.3675	$16.27 \ a$	482.2804	$16.38~{\rm s}$	484.2743	$16.27~\mathrm{s}$
463.2972	$16.27 \ a$	464.3699	$16.33 \ a$	482.2845	$16.35~\mathrm{s}$	484.2758	$16.30~\mathrm{s}$
463.2992	$16.27 \ a$	464.3724	$16.31 \ a$	482.2886	$16.27~\mathrm{s}$	484.2787	$16.31~{\rm s}$
463.3022	$16.31 \ a$	464.3749	$16.39 \ a$	482.2927	$16.21~\mathrm{s}$	484.2815	$16.33~\mathrm{s}$
463.3052	$16.21 \ a$	464.3799	$16.41 {\rm a}$	482.2968	$16.32~\mathrm{s}$	484.2830	$16.30~\mathrm{s}$
463.3083	$16.27 \ a$	464.3874	$16.33 \ a$	482.3009	$16.31~{\rm s}$	484.2844	$16.32~\mathrm{s}$
463.3113	$16.26~\mathrm{a}$	464.3974	$16.31 \ {\rm a}$	482.3050	$16.24~\mathrm{s}$	484.2873	$16.31~{\rm s}$
463.3174	$16.29 \ a$	464.3999	$16.30 \ a$	482.3091	$16.30~\mathrm{s}$	484.2917	$16.33~\mathrm{s}$
463.3242	$16.20~\mathrm{a}$	464.4024	$16.23~\mathrm{a}$	482.3132	$16.15~\mathrm{s}$	484.2960	$16.28~\mathrm{s}$
463.3267	$16.20 \ a$	464.4049	$16.25~\mathrm{a}$	482.3173	$16.18~\mathrm{s}$	484.3000	$16.27~\mathrm{s}$
463.3292	$16.14 {\rm a}$	464.4074	$16.20~\mathrm{a}$	482.3275	$16.21~\mathrm{s}$	484.3032	$16.31~{\rm s}$
463.3322	$16.17 \ a$	464.4099	$16.23~\mathrm{a}$	482.3358	$16.20~\mathrm{s}$	484.3061	$16.36~{\rm s}$
463.3347	$16.15 {\rm \ a}$	464.4125	$16.32~\mathrm{a}$	482.3399	$16.29~\mathrm{s}$	484.3090	$16.37~\mathrm{s}$
463.3372	$16.22~\mathrm{a}$	464.4150	$16.28~\mathrm{a}$	482.3440	$16.31~{\rm s}$	484.3119	$16.36~{\rm s}$
463.3397	$16.31 \ a$	464.4175	$16.38~\mathrm{a}$	482.3481	$16.34~\mathrm{s}$	484.3148	$16.29~\mathrm{s}$
463.3422	$16.31 \ a$	464.4200	$16.41 {\rm a}$	482.3522	$16.20~\mathrm{s}$	484.3192	$16.30~\mathrm{s}$
463.3447	$16.36 \ {\rm a}$	468.3448	$16.24~\mathrm{a}$	482.3563	$16.20~\mathrm{s}$	484.3235	$16.26~\mathrm{s}$
463.3472	$16.35~\mathrm{a}$	468.3505	$16.31 \ a$	482.3604	$16.18~\mathrm{s}$	484.3333	$16.36~\mathrm{s}$
463.3497	$16.31 \ a$	468.3563	$16.33 \ a$	482.3645	$16.25~\mathrm{s}$	484.3383	$16.36~{\rm s}$
463.3521	$16.35 \ a$	468.3675	$16.25 {\rm ~a}$	482.3686	$16.15~\mathrm{s}$	484.3420	$16.36~\mathrm{s}$
463.3546	$16.34 {\rm \ a}$	468.3725	$16.29 \ a$	482.3727	$16.24~\mathrm{s}$	484.3458	$16.31~{\rm s}$
463.3596	$16.40~\mathrm{a}$	468.3750	$16.22~\mathrm{a}$	482.3768	$16.26~\mathrm{s}$	484.3495	$16.30~\mathrm{s}$
463.3651	$16.30 \ a$	468.3800	$16.21 \ a$	482.3809	$16.36~\mathrm{s}$	484.3570	$16.31~{\rm s}$
464.3116	$16.26 \ a$	468.3849	$16.18 \ a$	482.3850	$16.29~\mathrm{s}$	484.3683	$16.27~\mathrm{s}$
464.3143	$16.22 \ a$	468.3874	$16.21 \ a$	482.3891	$16.33~\mathrm{s}$	484.3795	$16.30~\mathrm{s}$
464.3168	$16.29 \ a$	468.3924	$16.27 \ a$	482.3932	$16.34~\mathrm{s}$	484.3908	$16.32~\mathrm{s}$
464.3196	$16.25 \ a$	468.3974	$16.24~\mathrm{a}$	482.3973	$16.34~\mathrm{s}$	484.4021	$16.32~\mathrm{s}$
464.3218	$16.27 \ a$	468.4003	$16.28 \ a$	484.2208	$16.21~\mathrm{s}$	484.4133	$16.36~\mathrm{s}$
464.3242	$16.37 \ a$	468.4028	$16.35 \ a$	484.2237	$16.18~{\rm s}$	484.4246	$16.33~\mathrm{s}$
464.3267	$16.34 \ a$	468.4053	$16.30 \ a$	484.2251	$16.19~\mathrm{s}$	484.4358	$16.32~\mathrm{s}$
464.3292	$16.31 \ a$	468.4078	$16.35 \ a$	484.2280	$16.31~{\rm s}$	491.2367	$16.29~\mathrm{s}$
464.3317	$16.31 \ a$	468.4103	$16.40 \ a$	484.2309	$16.41 \mathrm{~s}$	491.2421	$16.14~\mathrm{s}$
464.3342	$16.27~\mathrm{a}$	468.4128	$16.36~{\rm a}$	484.2338	$16.32~\mathrm{s}$	491.2456	$16.13~\mathrm{s}$
464.3367	$16.26 \ a$	468.4153	$16.40 \ a$	484.2381	$16.32~\mathrm{s}$	491.2546	$16.32~{\rm s}$
464.3392	$16.26~\mathrm{a}$	468.4177	$16.40~\mathrm{a}$	484.2425	$16.30~\mathrm{s}$	491.2654	$16.20~\mathrm{s}$
464.3417	$16.26~\mathrm{a}$	468.4202	$16.37 \ a$	484.2468	$16.25~\mathrm{s}$	491.2726	$16.20~\mathrm{s}$
464.3442	16.33 a	468.4228	$16.34 \ a$	484.2512	$16.28~\mathrm{s}$	491.2869	$16.20~\mathrm{s}$

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
491.3414	$16.25~\mathrm{s}$	509.1920	$16.62~\mathrm{v}$	511.1629	16.31 v	511.2209	16.18 v
491.3596	$16.36~\mathrm{s}$	509.1935	$16.55~\mathrm{v}$	511.1651	$16.34~\mathrm{v}$	511.2219	$16.21~\mathrm{v}$
491.3649	$16.34~\mathrm{s}$	509.1950	$16.56~\mathrm{v}$	511.1672	$16.32~\mathrm{v}$	511.2230	$16.25~\mathrm{v}$
491.3685	$16.30~\mathrm{s}$	509.1964	$16.55~\mathrm{v}$	511.1683	$16.30~\mathrm{v}$	511.2241	$16.25~\mathrm{v}$
491.3904	$16.34~\mathrm{s}$	509.1979	$16.59~\mathrm{v}$	511.1694	$16.29~\mathrm{v}$	511.2252	$16.24~\mathrm{v}$
491.4030	$16.30~\mathrm{s}$	509.1994	$16.58~\mathrm{v}$	511.1704	$16.27~\mathrm{v}$	511.2262	$16.21~\mathrm{v}$
491.4120	$16.32~\mathrm{s}$	509.2008	$16.61~\mathrm{v}$	511.1715	$16.25~\mathrm{v}$	511.2273	$16.24~\mathrm{v}$
491.4209	$16.31~{\rm s}$	509.2023	$16.65~\mathrm{v}$	511.1726	$16.26~\mathrm{v}$	511.2284	$16.27~\mathrm{v}$
491.4281	$16.40~\mathrm{s}$	509.2037	$16.53~\mathrm{v}$	511.1747	$16.22~\mathrm{v}$	511.2305	$16.25~\mathrm{v}$
491.4371	$16.36~\mathrm{s}$	509.2052	$16.55~\mathrm{v}$	511.1769	$16.19~\mathrm{v}$	511.2327	$16.20~\mathrm{v}$
491.4442	$16.24~\mathrm{s}$	509.2067	$16.50~\mathrm{v}$	511.1780	$16.22~\mathrm{v}$	511.2338	$16.20~\mathrm{v}$
491.4514	$16.24~\mathrm{s}$	509.2081	$16.50~\mathrm{v}$	511.1791	$16.23~\mathrm{v}$	511.2348	$16.23~\mathrm{v}$
491.4622	$16.35~\mathrm{s}$	509.2096	$16.52~\mathrm{v}$	511.1801	$16.21~\mathrm{v}$	511.2359	$16.22~\mathrm{v}$
497.2420	$16.25~\mathrm{s}$	509.2111	$16.55~\mathrm{v}$	511.1812	$16.18~\mathrm{v}$	511.2370	$16.19~\mathrm{v}$
497.2458	$16.26~\mathrm{s}$	509.2125	$16.59~\mathrm{v}$	511.1823	$16.15~\mathrm{v}$	511.2380	$16.20~\mathrm{v}$
497.2533	$16.30~{\rm s}$	509.2140	$16.62~\mathrm{v}$	511.1834	$16.21~\mathrm{v}$	511.2391	$16.22~\mathrm{v}$
497.2645	$16.25~\mathrm{s}$	509.2154	$16.58~\mathrm{v}$	511.1845	$16.21~\mathrm{v}$	511.2413	$16.19~\mathrm{v}$
497.2758	$16.25~\mathrm{s}$	509.2169	$16.54~\mathrm{v}$	511.1856	$16.17~\mathrm{v}$	511.2434	$16.23~\mathrm{v}$
497.2833	$16.26~\mathrm{s}$	509.2183	$16.46~\mathrm{v}$	511.1867	$16.16~\mathrm{v}$	511.2445	$16.22~\mathrm{v}$
497.2908	$16.34~\mathrm{s}$	509.2198	$16.46~\mathrm{v}$	511.1878	$16.19~\mathrm{v}$	511.2456	$16.21~\mathrm{v}$
497.3020	$16.08~{\rm s}$	509.2213	$16.39~\mathrm{v}$	511.1889	$16.17~\mathrm{v}$	511.2466	$16.24~\mathrm{v}$
497.3133	$16.26~\mathrm{s}$	509.2227	$16.44~\mathrm{v}$	511.1899	$16.15~\mathrm{v}$	511.2477	$16.28~\mathrm{v}$
497.3245	$16.30~\mathrm{s}$	509.2242	$16.45~\mathrm{v}$	511.1910	$16.15~\mathrm{v}$	511.2488	$16.26~\mathrm{v}$
497.3358	$16.33~{\rm s}$	509.2257	16.49 v	511.1921	16.18 v	511.2499	$16.30~\mathrm{v}$
497.3471	$16.32 \mathrm{~s}$	509.2286	16.52 v	511.1943	16.19 v	511.2509	16.29 v
497.3546	$16.35~\mathrm{s}$	509.2315	16.55 v	511.1976	16.11 v	511.2520	16.31 v
497.3583	$16.28~{\rm s}$	509.2330	16.52 v	511.1997	16.16 v	511.2531	16.32 v
497.3621	$16.25 \mathrm{~s}$	509.2344	16.52 v	511.2008	16.17 v	513.1421	16.50 v
497.3658	$16.23 \mathrm{~s}$	509.2359	16.55 v	511.2019	16.21 v	513.1463	16.31 v
497.3696	$16.40 \mathrm{\ s}$	509.2373	16.55 v	511.2030	16.21 v	513.1777	16.36 v
497.3771	$16.35 \mathrm{\ s}$	509.2403	16.56 v	511.2041	16.23 v	513.2102	16.46 v
509.1716	16.64 v	509.2432	16.52 v	511.2052	16.22 v	513.2648	16.28 v
509.1731	16.60 v	509.2447	16.54 v	511.2063	16.24 v	514.1410	16.24 v
509.1745	16.58 v	509.2484	16.55 v	511.2074	16.23 v	514.1410	16.41 v
509.1760	16.59 v	509.2513	16.55 v	511.2085	16.24 v	514.1934	16.31 v
509.1774	16.60 v	509.2528	16.52 v	511.2096	16.18 v	514.1934	16.60 v
509.1789	16.55 v	509.2543	16.52 v	511.2106	16.24 v	515.2717	16.10 s
509.1804	16.58 v	509.2557	16.51 v	511.2117	16.24 v	515.2769	16.12 s
509.1818	16.60 v	509.2572	16.56 v	511.2128	16.22 v	515.2821	16.18 s
509.1833	16.56 v	509.2586	16.46 v	511.2139	16.23 v	515.2873	16.22 s
509.1847	16.58 V	509.2601	16.48 V	511.2150	16.25 V	515.2978	16.29 s
509.1862	10.50 V	009.2622	10.45 V	511.2161	16.26 V	515.3134	10.10 S
509.1877 F00.1001	10.00 V	011.1580 F11.1501	16.29 V	511.2171	10.23 V	015.3290	10.21 s
509.1891	10.04 V	511.1591 511.1609	10.34 V	511.2187 511.9109	10.18 V	015.3395	10.13 s
509.1906	16.63 v	511.1602	16.32 v	511.2198	16.15 v	515.3447	16.05 s

Table 6. Continued.

JD*	V	JD*	V	JD*	V	JD*	V
521.2603	$16.28~\mathrm{s}$	521.2869	$16.39~\mathrm{s}$	655.6209	$16.13 \mathrm{~s}$		
521.2709	$16.29~\mathrm{s}$	521.3034	$16.27~\mathrm{s}$	657.6199	$16.01 \mathrm{~s}$		
521.2761	$16.45~\mathrm{s}$	521.3192	$16.13~\mathrm{s}$	662.6218	$16.05~\mathrm{s}$		

Table 7. R_C magnitudes of DNP2010. The symbols after magnitudes are explained in Table 2. $JD_{hel} = JD^* + 2~455~000$.

JD*	R_C	JD*	R_C	JD*	R_C	JD*	R_C
338.4767	$10.83~{\rm s}$	385.5163	$15.80~\mathrm{s}$	434.4592	$15.90~\mathrm{s}$	483.4279	$16.27~\mathrm{s}$
338.4777	$10.80~{\rm s}$	385.5212	$15.76~\mathrm{s}$	434.4644	$15.87~\mathrm{s}$	483.4296	$16.39~\mathrm{s}$
338.4853	$10.81~{\rm s}$	387.3754	$15.97~\mathrm{s}$	434.4696	$15.99~\mathrm{s}$	484.3324	$16.25~\mathrm{s}$
340.4386	$11.08~{\rm s}$	387.3814	$15.80~\mathrm{s}$	434.4749	$15.80~\mathrm{s}$	484.3341	$16.17~\mathrm{s}$
340.4395	$11.06~{\rm s}$	387.3873	$15.96~\mathrm{s}$	434.4801	$15.78~\mathrm{s}$	484.3373	$16.10~\mathrm{s}$
340.4451	$11.08~{\rm s}$	387.3932	$15.92~\mathrm{s}$	434.4854	$15.85~\mathrm{s}$	497.3823	$16.50~\mathrm{s}$
340.4464	$11.08~{\rm s}$	387.3991	$16.01~{\rm s}$	434.4906	$15.87~\mathrm{s}$	497.3843	$16.35~\mathrm{s}$
340.4476	$11.07~{\rm s}$	387.4050	$15.86~\mathrm{s}$	434.4959	$15.90~\mathrm{s}$	513.1780	$15.99~\mathrm{v}$
342.4227	$11.12~\mathrm{s}$	387.4109	$15.86~\mathrm{s}$	434.5011	$15.82~\mathrm{s}$	514.1416	$16.25~\mathrm{v}$
342.4230	$11.14~{\rm s}$	387.4168	$15.95~\mathrm{s}$	434.5064	$15.83~\mathrm{s}$	514.1938	$16.40~\mathrm{v}$
342.4958	$11.09~{\rm s}$	387.4227	$15.90~\mathrm{s}$	454.3398	$15.98 \ a$	515.2779	$16.32 \ a$
342.4978	$11.05~{\rm s}$	387.4286	$15.99~\mathrm{s}$	454.3418	$15.80~\mathrm{a}$	515.2936	$16.04~\mathrm{a}$
346.4024	$11.37~{\rm s}$	387.4346	$15.91~\mathrm{s}$	454.3466	$15.98 \ a$	515.3092	$16.09 \ a$
346.4818	$11.34~{\rm s}$	388.4631	$15.70~\mathrm{s}$	454.3504	$15.95 \ a$	515.3249	$16.10 \ a$
346.4836	$11.37~{\rm s}$	388.4678	$15.59~\mathrm{s}$	455.3914	$15.82~\mathrm{a}$	515.3405	$16.08 \ a$
350.4014	$14.04~\mathrm{s}$	388.5790	$15.74~\mathrm{s}$	455.3976	$15.87~\mathrm{a}$	515.3509	$16.06 \ a$
350.4913	$13.93~\mathrm{s}$	389.3977	$15.86~\mathrm{s}$	455.4014	$15.81 \ a$	521.2614	$16.49 \ a$
350.4938	$14.01~{\rm s}$	389.4023	$15.87~\mathrm{s}$	455.4052	$15.75 \ a$	521.2772	$16.17 \ a$
353.5256	$14.29~\mathrm{s}$	390.5076	$15.97~\mathrm{s}$	459.2628	$16.08 \ a$	521.2880	16.68 a
353.5275	$14.32~\mathrm{s}$	390.5087	$15.97~\mathrm{s}$	459.2684	$16.09 \ a$	521.2933	$16.53~\mathrm{a}$
354.4334	$14.33~\mathrm{s}$	391.4930	$15.67~\mathrm{s}$	459.2744	$16.11 \ a$	521.2986	$16.21 \ a$
354.4343	$14.36~\mathrm{s}$	399.3950	$16.02~{\rm s}$	463.2804	$16.17 \ a$	521.3045	16.19 a
354.5734	$14.27~\mathrm{s}$	399.3978	$16.05~\mathrm{s}$	463.2863	$16.22 \ a$	521.3151	16.15 a
357.4897	$14.73~\mathrm{s}$	399.3993	$16.13~{\rm s}$	463.2922	$16.30 \ a$	655.6163	$16.00~\mathrm{s}$
358.4733	$14.83~\mathrm{s}$	434.4082	$15.71~\mathrm{s}$	468.3484	16.19 a	655.6200	$16.00~\mathrm{s}$
358.4757	$14.82~\mathrm{s}$	434.4187	$15.86~\mathrm{s}$	468.3542	$16.19 \ a$	655.6264	$16.10~\mathrm{s}$
380.3708	$15.65~\mathrm{s}$	434.4240	$15.77~\mathrm{s}$	468.3599	16.23 a	657.6165	$15.98~\mathrm{s}$
381.3962	$15.81~\mathrm{s}$	434.4345	$15.78~\mathrm{s}$	468.3657	16.12 a	662.6240	$16.48~\mathrm{s}$
381.4004	$15.79~\mathrm{s}$	434.4450	$15.79~\mathrm{s}$	482.3212	$16.19~\mathrm{s}$		
381.4047	$15.78~\mathrm{s}$	434.4539	$15.82~\mathrm{s}$	482.3227	$16.23~\mathrm{s}$		

Table 8. I_C magnitudes of DNP2010. The symbols after magnitudes are explained in Table 2. $JD_{hel} = JD^* + 2\,455\,000$.

1D*	L	1D*	L	ID*	L	ID*	I
1D	I_C	JD.	I_C	JD.	I_C	JD	I_C
338.4803	$11.98 \ s$	342.4238	$12.31 \ {\rm s}$	350.4916	$14.39 \mathrm{\ s}$	357.4886	$14.89 \mathrm{~s}$
338.4811	$12.02~\mathrm{s}$	342.4961	$12.28~\mathrm{s}$	350.4941	$14.40~\mathrm{s}$	357.4901	$14.89~\mathrm{s}$
340.4455	$12.24~\mathrm{s}$	342.4980	$12.25~\mathrm{s}$	353.5260	$14.65~\mathrm{s}$	358.4738	$14.95~\mathrm{s}$
340.4467	$12.25~\mathrm{s}$	346.4821	$12.51~\mathrm{s}$	353.5278	$14.64~\mathrm{s}$	358.4761	$14.99~\mathrm{s}$
340.4480	$12.25~\mathrm{s}$	346.4839	$12.47~\mathrm{s}$	354.4338	$14.68~\mathrm{s}$		
342.4234	$12.24~\mathrm{s}$	350.4017	$14.50~\mathrm{s}$	354.4353	$14.66~\mathrm{s}$		

References

Arai, A.: 2010, Central Bureau Electronic Telegram, 2275

- Camilleri, P.: 2010, Central Bureau Electronic Telegram, 2275
- Chochol, D., Katysheva, N.A., Shugarov, S.Yu., Volkov, I.M.: 2009, Contrib. Astron. Obs. Skalnaté Pleso **39**, 43
- Chochol, D., Katysheva, N.A., Shugarov, S.Yu., Volkov, I.M., Andreev, M.: 2010, Contrib. Astron. Obs. Skalnaté Pleso 40, 19
- Dodin, A.: 2011, private comm.

Drake, A., Djorgovski, S. G., Mahabal, A., Beshore, E., Larson, S., Graham, M. J., Williams, R., Christensen, E., Catelan, M., Boattini, A., Gibbs, A., Hill, R., Kowalski, R..: 2009, Astrophys. J. 696, 870

Gänsicke, B.T.: 2010, ATel 2605

Godon, P., Sion, E.M., Cheng, F., Gänsicke, B.T., Howell, S., Knigge, Ch., Sparks, W.M., Starfield, S.: 2004, Astrophys. J. 602, 336

Graham, M.L., Broelhoven-Fiene, H., Parker, A.H., Sadavoy, S., Maxwell, A.J., Hsiao, E.Y., Balam, D.D.: 2010, Central Bureau Electronic Telegram, 2275

Henden, A.: 2010, Central Bureau Electronic Telegram, 2275

Henden, A., Munari, U.: 2006, Astron. Astrophys. 458, 339

Hudec, R.: 2010, ATel, 2619

Itagaki, K.: 2010, Central Bureau Electronic Telegram, 2275

- Kaigorodov, P.V., Bisikalo, D.V., Kuznetsov, O.A., Boyarchuk, A.A.: 2006, Astronomy Reports 50, 537
- Kato, T.: 2010, vsnet-newvar 2896
- Kato, T., Imada, A., Uemura, M. et al.: 2009, Publications of the Astronomical Society of Japan 61S, 395
- Kato, T., Maehara, H., Monard, B.: 2008, Publications of the Astronomical Society of Japan 60L, 23
- Kato, T., Maehara, H., Uemura, M., et al.: 2010, Publications of the Astronomical Society of Japan 62, 1525
- Kato, T., Maehara, H., Miller, I., et al.: 2012, Publications of the Astronomical Society of Japan 64, 21

Lin, D.N.C., Papaloizou, J.: 1979, Mon. Not. R. Astron. Soc. 186, 799

- Long, K.S., Sion, E.M., Gänsicke, B.T., Szkody, P.: 2004, Astrophys. J. 602, 948
- Nakano, S.: 2010, Central Bureau Electronic Telegram, 2275

- Osaki, Y.: 1989, Publications of the Astronomical Society of Japan 41, 1005
- Osaki, Y., Meyer, F.: 2002, Astron. Astrophys. 383, 574
- Pavlenko, E.P., Shugarov, S. Yu., Baklanova, D.N., Katysheva, N.A.: 2008, *Izv. Krymskoj Astrofiz. Obs.* **109**, 148

Roeser, S., Demleitner, M., Schilbach, E.: 2010, Astron. J. 139, 2440

- Shugarov, S.Yu., Katysheva, N., Chochol, D., Andreev, M., Irsmambetova, T.: 2012, in *The Physics of Accreting Compact Binaries July 26–30, 2010*, ed.: D. Nogami, Universal Academy Press, Tokyo, in press
- Smith, A. J., Haswell, C. A., Murray, J. R., Truss, M. R., Foulkes, S. B.: 2007, Mon. Not. R. Astron. Soc. 378, 785
- Tovmassian, G., Clark, D., Zharikov, S.: 2010, Central Bureau Electronic Telegram, 2283

Warner, B.: 1995, *Cataclysmic Variable Stars*, Cambridge University Press, Cambridge Whitehurst, R.: 1988, *Mon. Not. R. Astron. Soc.* **232**, 35

Yamaoka, H.: 2010a, Central Bureau Electronic Telegram, 2273

Yamaoka, H.: 2010b, Central Bureau Electronic Telegram, 2275