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Abstract. We present the formulas which enable a fast calculation of the
acceleration of a small body perturbed by a ring of given radius and mass
situated around a central star. One invariant of motion is found. This work is
the first step toward a semi-analytical description of the acceleration due to a
planar belt extending from a lower to an upper radius with a given power-law
radial distribution of matter.
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1. Introduction

The net gravity of an ensemble of small bodies concentrated into a circular
ring around a central body can significantly influence the motion of another
small body in a vicinity of the ring. The potential of the ring is often modelled
in terms of a large number of massive point-like particles and such N -body
action is calculated. If the dynamics of another set of small bodies is studied,
the number of calculated interactions between these particles and ring particles
is usually so high that the requirements on the computational equipment are
extremely high and cannot often be satisfied.

In this contribution, we describe the gravitational potential of a thin, one-
dimensional ring in a semi-analytical way to reduce the computational require-
ments. It is the first step of our effort to find the potential of a two-dimensional
belt, which could be used as an approximation of reality in the studies of dy-
namics of small bodies, when these are influenced by, e.g., a main-asteroid belt,
an once-existing proto-planetary disc, or a gaseous solar nebula. Just because
the potential of these forms is hard to describe, in the general case, their net
gravity is usually unjustly neglected.

2. The equations of motion

Let us consider a concentric ring with the radius ρ and total mass mR. The
length density is assumed to be constant along the entire ring. Its thickness is
negligible in comparison with ρ. The plane of the ring is assumed to be identical
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to the x−y coordinate plane. We denote the mass of the central (in the origin
of the coordinate system) object as M .

In the gravitational potential of the central body and ring, we consider a
massless test particle (TP) characterized with the position vector r = (x, y, z)
and velocity vector ṙ = (ẋ, ẏ, ż). The components of vector of the TP’s accel-
eration from a section of the ring of infinitesimal length ds = ρ.dφ, which has
mass dmR and is situated in the angular distance φ from the coordinate x-axis,
are

ẍφ = −k2 (x− ρ cosφ)
r3
R

dmR, (1)

ÿφ = −k2 (y − ρ sinφ)
r3
R

dmR, (2)

z̈φ = −k2 z

r3
R

dmR, (3)

where k is the Gauss gravitational constant and rR is the distance between the
considered ring section and TP equal to

rR =
√

(x− ρ cosφ)2 + (y − ρ sinφ)2 + z2. (4)

Considering the trivial proportionality dmR/mR = ρ dφ/(2πρ), the mass of
the section can be given as

dmR =
mR

2π
dφ. (5)

Inserting the latter into Eqs.(1)−(3) and integrating over the whole ring length,
i.e. through φ from 0 to 2π, we obtain the acceleration of the TP from the whole
ring as

ẍρ = −k2mR

2π

∫ 2π

0

x− ρ cosφ
r3
R

dφ, (6)

ÿρ = −k2mR

2π

∫ 2π

0

y − ρ sinφ
r3
R

dφ, (7)

z̈ρ = −k2mR

2π

∫ 2π

0

z

r3
R

dφ. (8)

The complete equations of TP’s motion can be written adding the accelera-
tion from the central body, i.e.

ẍ = −k2Mx

r3
− k2mR

2π

∫ 2π

0

x− ρ cosφ
r3
R

dφ, (9)

ÿ = −k2My

r3
− k2mR

2π

∫ 2π

0

y − ρ sinφ
r3
R

dφ, (10)
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z̈ = −k2Mz

r3
− k2mR

2π

∫ 2π

0

z

r3
R

dφ, (11)

where r = |r|.
We can establish the potential function, U , for the TP in the form

U =
k2M

r
+
k2mR

2π

∫ 2π

0

dφ√
(x− ρ cosφ)2 + (y − ρ sinφ)2 + z2

=

=
k2M

r
+
k2mR

2π

∫ 2π

0

dφ√
r2 + ρ2 − 2ρ(x cosφ+ y sinφ)

. (12)

One can easily demonstrate that the equations of motion (9)−(11) can be re-
written, with the help of U , as

ẍ =
∂U

∂x
, (13)

ÿ =
∂U

∂y
, (14)

z̈ =
∂U

∂z
. (15)

Now we can proceed, in the common way in celestial mechanics, to obtain an
invariant, which we denote by h. When we multiply Eq.(13) by ẋ, Eq.(14) by ẏ,
Eq.(15) by ż, then adding these three equations yields

ẋẍ+ ẏÿ + żz̈ =
∂U

∂x
ẋ+

∂U

∂y
ẏ +

∂U

∂z
ż. (16)

Eq.(16) can be directly integrated over time and the integration constant h can
be expressed as

h =
1
2
(
ẋ2 + ẏ2 + ż2

)
− U. (17)

3. The acceleration in the form of a power series

We denote the integral figuring is the definition (12) of the potential function
U as

IU =
∫ 2π

0

dφ√
r2 + ρ2 − 2ρ(x cosφ+ y sinφ)

. (18)

If we denote A = 2ρ/(r2 + ρ2), the integrand can be expanded into a power
series of the argument ξ = A(x cosφ+ y sinφ),

IU =
1√

r2 + ρ2

∫ 2π

0

[
1 +

1
2
ξ +

1.3
2.4

ξ2 +
1.3.5
2.4.6

ξ3 +
1.3.5.7
2.4.6.8

ξ4 + ...

]
dφ =

=
1√

r2 + ρ2

∫ 2π

0

[
1 +

∞∑
i=1

(2i− 1)!!
(2i)!!

ξi

]
dφ. (19)
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The i-th power of the argument ξ can be calculated as

ξi = Ai
i∑

j=0

(
i
j

)
xi−jyj cosi−j φ sinj φ. (20)

The integration of IU will be performed, if we obtain the integrals

Ii−j,j =
∫ 2π

0

cosi−j φ sinj φdφ (21)

for the individual indices i− j and j.
After routine mathematical calculations, one can show that

Ii−j,0 = 0 for i− j = 1, 3, 5, ...;

Ii−j,0 = 2π
(i− j − 1)!!

(i− j)!!
for i− j = 2, 4, 6, ...;

I0,j = 0 for j = 1, 3, 5, ...;

I0,j = 2π
(j − 1)!!
j!!

for j = 2, 4, 6, ...;

Ii−j,1 = I1,j = 0 for i− j = 1, 2, 3, ... and j = 1, 2, 3, ...;

Ii−j,j =
j − 1
i

Ii−j,j−2 for i− j = 2, 3, 4, ... and j = 2, 3, 4, .... (22)

Using these results, the potential energy, U , can be expressed as

U =
k2M

r
+

k2mR√
r2 + ρ2

1 +
∞∑
i=1

(2i− 1)!!
(2i)!!

Ai
i∑

j=0

(
i
j

)
xi−jyj

Ii−j,j
2π

 . (23)

We can proceed in a similar way to express the accelerations (9)−(11). First,
we denote

I1 =
∫ 2π

0

dφ

[1−A(x cosφ+ y sinφ)]3/2
, (24)

IC =
∫ 2π

0

cosφdφ

[1−A(x cosφ+ y sinφ)]3/2
, (25)

IS =
∫ 2π

0

sinφdφ

[1−A(x cosφ+ y sinφ)]3/2
. (26)

The results of these integrations can be given in the form of a power series as

I1 = 2π

1 +
∞∑
i=1

(2i+ 1)!!
(2i)!!

Ai
i∑

j=0

(
i
j

)
xi−jyj

Ii−j,j
2π

 , (27)
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IC = 2π
∞∑
i=1

(2i+ 1)!!
(2i)!!

Ai
i∑

j=0

(
i
j

)
xi−jyj

Ii−j+1,j

2π
, (28)

IS = 2π
∞∑
i=1

(2i+ 1)!!
(2i)!!

Ai
i∑

j=0

(
i
j

)
xi−jyj

Ii−j,j+1

2π
. (29)

With the help of I1, IC , and IS given by relations (27)−(29), the components
of the TP’s acceleration can be calculated as

ẍ = −k2Mx

r3
− k2 mR

(r2 + ρ2)3/2

(
x
I1
2π
− ρIC

2π

)
, (30)

ẍ = −k2My

r3
− k2 mR

(r2 + ρ2)3/2

(
y
I1
2π
− ρ IS

2π

)
, (31)

ẍ = −k2Mz

r3
− k2 mR

(r2 + ρ2)3/2
z
I1
2π
. (32)

Although the found power series are convergent, they are not, unfortunately,
well convergent. It is necessary to take into account more than 50 first members
of series (23) to obtain the value of U with an acceptable precision. Even then,
we recommend a careful combination of algebraic operation, which should avoid
large numbers. For example, the ratio of double factorial (2i− 1)!!/(2i)!! should
be calculated as (1/2).(3/4).(5/6)....[(2i−1)/(2i)], instead of calculation (2i−1)!!
and (2i)!! firstly, and then dividing the resultant values.

In the case of series (27)−(29), we can obtain the resultant values only with
a lower precision (in the example given in Sect. 4, the order of magnitude of
relative deviation of the integration invariants from the mean value is 10−6;
and it cannot be reduced). If a higher precision (up to the full computer dou-
ble precision) is necessary, we recommend calculating the integrals in relations
(24)−(26) rather numerically. Fortunately, these numerical calculations, with
the high precision, appear to be quite fast.

The next step of our study will be a further approach to the reality: a
generalization of the semi-analytical approach to a material planar belt starting
at a radius ρ1 and ending at ρ2 having the surface density which can be described
by the power law ∝ ρ−s, i.e. with the index of slope −s. We note that several
authors have, of course, presented the perturbation of a belt or, so far, 3D
disc. However, they assumed either such a special distribution of matter that
enables an easy description of potential (e.g. Jiang & Yeh, 2004), or they studied
the perturbation in a situation in which approximations of the potential were
possible. For example, Mayo (1979) studied an influence of the 3D asteroid belt
on the relatively distant terrestrial planets. In the cosmogony of small bodies in
the proto-planetary disc, one has to use other approach.
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4. An example

Instead of a conclusion, we present an example of the perturbation by a ring
on a TP. Specifically, we consider the ring of radius ρ = 15 AU and mass mR =
0.005 M� situated around a star whose mass is equal to 1 M�. In the beginning,
the massless TP is in the Keplerian orbit characterized by the elements: q =
6 AU, a = 35 AU (then e = 0.82857), ω = 20o, Ω = 60o, and i = 30o. The
starting value of its true anomaly is f = 10o.
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Figure 1. The behaviour of the orbital elements of an example test particle perturbed

by a ring on the orbital-period time scale.
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Figure 2. The behaviour of the orbital elements of an example test particle perturbed

by a ring on the time scale of the period of perturbation.

In Fig. 1, we can see the evolution of the orbital elements on the time scale
comparable to the mean orbital period of the TP, which is about 204.4 years.
The change of all elements is periodic, whereby this period corresponds to the
orbital period.

In Fig. 2, the overall trend in the evolution of the orbital elements is illus-
trated. The semi-major axis, a, does not change (plot a) on the long time scale
(only small librations related to the position of the TP in its orbit, which are
seen in Fig. 1b, occur). This constancy can be expected, because the Keplerian
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semi-major axis is related to constant h (Eq.(17)), giving the total energy of the
TP per unit mass, as h = k2M/(2<a>). In other words, the averaged <a> is
conserved.

The change of Ω is monotonous (Fig. 2e). An interesting feature of the dy-
namics is an obvious coupling of librating q, e, ω, and i (Fig. 2a, c, d, and f). In
principle, the common period of these librations should be possible to be found.
Unfortunately, the appropriate calculations are much difficult to be done and
used.
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