# Search for radial velocity variation in visual binary and multiple stars

J. Tremko<sup>1</sup>, †G.A. Bakos<sup>2</sup>, J. Žižňovský<sup>1</sup> and T. Pribulla<sup>1,3,4</sup>

<sup>1</sup> Astronomical Institute of the Slovak Academy of Sciences 05960 Tatranská Lomnica, The Slovak Republic

<sup>2</sup> University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada

<sup>3</sup> Astrophysicalishes Institut und Universitätssternwarte, Schillergässchen 2-3, D-07745 Jena, BRD

<sup>4</sup> David Dunlap Observatory, University of Toronto, Canada

Received: May 2, 2010; Accepted: August 2, 2010

**Abstract.** Radial velocity measurements are given for 143 stars, predominantly for the components of visual binaries. A critical examination of the present and older observations extending over several decades indicates that the majority of the observed stars have a variable radial velocity. The cause of the radial velocity changes is the binary nature, multiplicity and/or the intrinsic variability of pulsating variable stars. Altogether 577 new radial velocity measurements are presented. For ADS 7651 the first RV curve is published. **Key words:** stars – binary – spectroscopic – radial velocities – ADS 7651

#### 1. Introduction

The determination of the radial velocities of the components of visual binaries was one of the programs conducted at the David Dunlap Observatory of the University of Toronto (hereafter DDO) and the University of Waterloo, Canada, for a long time. The results were published, e. g., by Doucet and Bakos (1972), Bakos (1974a) and Bakos (1974b). The aim of these studies at the beginning was mainly the calculation of the velocity components of the solar motion in the Galaxy using radial velocities, proper motions and parallaxes of selected stars. For the search for possible radial velocity variability several stars were tested. The observations were conducted until December 1988.

There is strong evidence that the radial velocity variations are very often present in the evolved stars of the luminosity I-IV. Altogether 1609 evolved stars were observed by de Medeiros and Mayor (1999). Among them 304 were spectroscopic binaries and 64 suspected spectroscopic binaries. For 138 spectroscopic binaries their orbits were already known or calculated by these authors. A large part of this sample indicates radial velocity variations. Also the percentage of the spectroscopic binaries is surely higher.

Massarotti et al. (2008) measured rotational and radial velocities of 761 giants selected from the Hipparcos catalogue. They also derived the  $P(\chi^2)$  values.  $(P(\chi^2)$  is a probability that the radial velocity of a star is constant.) In their experience, stars with  $P(\chi^2) < 0.001$  often prove to be spectroscopic binaries. However, the  $P(\chi^2)$  value itself is a feeble parameter for the search of spectroscopic binaries.

In the last decades a lot of work has been done in the field of double and multiple stars. The results and extensive lists of papers can be found in the references of Eggleton and Tokovinin (2008) and Tokovinin (2008).

The aim of this paper is to present new spectroscopic observations obtained within the DDO program, search for the radial velocity variations and an effort to interpret them.

### 2. Observations and reduction

The observational material was obtained at the DDO 1.88 m reflecting telescope Cassegrain focus with the use of two different spectrographs. At the beginning of the observations a one-prism spectrograph with a 63.5 cm camera and a dispersion of 33  $\rm \AA\,mm^{-1}$  was used with Kodak 103a-O photographic plates. Starting from July 1969 (JD 2440405) a grating spectrograph with a reciprocal dispersion of 12  $\text{\AA}\,\text{mm}^{-1}$  and Kodak IIaO-B photographic plates were used. Measurements and reduction were carried out at the Waterloo University with a digitized Mann comparator. More than 95% of plates were measured by one of us (G.A.B.). The number of measured spectral lines varied from 6 to 33 on a plate and the number of the observations per star varied from 1 to 28. Radial velocities were computed by the method adopted at DDO using a computer of the Waterloo University. The standard error for a single measurement on the well-exposed plates with a sufficient number of measured lines for a 33  $\text{\AA}\,\text{mm}^{-1}$ dispersion was in 22% higher than 2.0  $\rm km\,s^{-1},$  and only in 20% of spectra above the 1.0  $\rm km\,s^{-1}$  limit for the 12  $\rm \AA\,mm^{-1}$  dispersion spectra. The extreme values of the standard errors are not regularly distributed among the measurements of different stars. For some stars all these values are below the  $1.0 \text{ km s}^{-1}$  limit and for the others all values are above this limit. The lowest values of  $\sigma$  were 0.58  $\rm km\,s^{-1}$  for 33  $\rm \AA\,mm^{-1}$  spectra and 0.2  $\rm km\,s^{-1}$  for the 12  $\rm \AA\,mm^{-1}$  ones. A full description of the instrument and its changes during the observational period can be found in Kamper et al. (1992).

#### 3. Results

We present our radial velocity measurements for stars with ADS numbers in Table 1 (ADS catalogue numbers are typed in the Italics font). Column 1 contains the HD and ADS numbers, column 2 the heliocentric Julian data of the observations, column 3 the measured radial velocity values, column 4 the standard mean error of a single measurement and the last column contains the number of the measured lines. The designation of the primary component A

was omitted except for the case when 2 or 3 components of the multiple system were observed. In Table 2 data for visual double stars without the ADS number and other type stars are listed (HIPPARCOS Catalogue numbers are typed in the Italics font). In the first column the Hipparcos number of the stars is used instead of the ADS designation.

Notes to Tab. 1 and Tab. 2 (only reliable data) were adopted from the literature, some beeing added by us. The references were numbered and their numbers are in square brackets in Notes to Tab. 1 and Tab. 2. For the spectroscopic binaries with known orbits (based on spectroscopic observations) only their orbital periods and eccentricities are given. For some of the stars values of probabilities  $P(\chi^2)$  are given, as they serve as a parameter to qualify the reality of the observed radial velocity variations. These probabilities were adopted from de Medeiros and Mayor (1999). Notes were mainly created in order to draw the readers'/observers' attention to stars worth further observation. Notes on photometric variability were taken mainly from the Hipparcos Input Catalogue (ESA, 1992).

#### 4. Summary and Discussion

In addition to data contained in Tables 1 and 2 information on radial velocities was available from other sources. These, in many cases, go back to the year 1900. Although the time intervals between observations show big gaps and in some cases the systematic errors surely exist and these errors may be involved in comparing observations from different spectrographs, the old observations were helpful in deciding whether a given star is constant or variable in the radial velocity. It has been found that systematic errors in radial velocities from different instruments play a much smaller role than it might have been expected. Usually radial velocity variations were found from a longer series of observations made at one place and confirmed by a similar series from another place (Bakos, 1974a).

The visual binaries listed here are wide pairs (separation 15 arcsec or more) and, therefore, taking into account the accuracy of our observations, no appreciable change in the radial velocity of the primary component resulting from the orbital motion is expected. The standard mean error of our observations is mostly between  $0.3 \text{ km s}^{-1}$  and  $1.0 \text{ km s}^{-1}$ . However, a part of our observations has a standard mean error above the upper value of this interval. The higher accuracy of the radial velocity and longer series in the future will make it possible to find the higher percentage of spectroscopic binaries among the visual binary stars. As this program contains a large percentage of the stars of luminosity classes I – IV and of late type stars, it is reasonable to suppose that in some cases also pulsational variations are present. The information on the specific behaviour of some interesting systems is summarized in the Notes to Tables 1 and 2.

| - | Star   | $\mathrm{JD}_{\mathrm{Hel}}$ | $V_{ m r}$            | $\sigma$ | Ν  | Star   | $\rm JD_{Hel}$ | $V_{\rm r}$       | $\sigma$ | Ν  |
|---|--------|------------------------------|-----------------------|----------|----|--------|----------------|-------------------|----------|----|
|   | HD/ADS | 2400000+                     | $(\mathrm{kms}^{-1})$ | $(\pm)$  |    | HD/ADS | 2400000 +      | $(\rm km s^{-1})$ | $(\pm)$  |    |
| - | 225009 | 35357.770                    | -13.2                 | 1.5      | 18 | 7927   | 40461.814      | -27.90            | 0.40     | 22 |
|   | 1 A    | 35359.770                    | -17.3                 | 0.9      | 16 | 1073   | 44097.891      | -28.03            | 0.84     | 16 |
|   |        | 35389.726                    | -36.4                 | 1.2      | 18 | 9546   | 35391.708      | -30.30            | 1.20     | 21 |
|   |        | 40475.791                    | -17.10                | 0.40     | 24 | 1233   | 35749.731      | -30.5             | 1.2      | 18 |
|   |        | 42312.759                    | -16.99                | 0.60     | 18 | 9774   | 40502.731      | -5.20             | 0.44     | 18 |
|   |        | 42717.507                    | -17.67                | 0.64     | 24 | 1268   | 43390.903      | -7.08             | 0.62     | 26 |
|   | 225276 | 35371.783                    | -4.8                  | 1.2      | 15 | 11049  | 35362.863      | -13.0             | 3.3      | 10 |
|   | 42     | 42732.601                    | -3.90                 | 0.56     | 27 | 1435   | 35375.878      | -20.2             | 2.2      | 14 |
|   | 895    | 41640.554                    | -6.20                 | 0.40     | 23 |        | 35383.815      | -17.8             | 1.8      | 15 |
|   | 161    | 42340.652                    | -6.84                 | 0.47     | 26 |        | 35741.812      | -16.5             | 2.2      | 13 |
|   | 3165   | 41583.713                    | -8.4                  | 0.4      | 25 | 11092  | 35368.821      | -13.9             | 1.8      | 11 |
|   | 486    | 43012.848                    | -10.82                | 0.59     | 12 | 1459   | 35391.794      | -16.8             | 2.2      | 13 |
|   |        | 43054.771                    | -8.45                 | 0.56     | 26 |        | 35401.712      | -17.2             | 1.6      | 13 |
|   |        | 43080.482                    | -11.94                | 0.68     | 23 |        | 35417.699      | -19.1             | 1.5      | 15 |
|   | 3531   | 42753.563                    | -43.35                | 0.56     | 27 |        | 35468.560      | -23.7             | 2.5      | 10 |
|   | 538    | 45210.853                    | -48.56                | 0.58     | 27 |        | 35480.522      | -26.3             | 3.0      | 9  |
|   | 3574   | 41543.713                    | -8.45                 | 0.46     | 26 |        | 35710.835      | -33.0             | 1.6      | 19 |
|   | 546    |                              |                       |          |    |        | 43446.679      | -20.00            | 0.93     | 7  |
|   | 3627   | 41605.617                    | -11.08                | 0.59     | 24 | 11727  | 35389.808      | +4.4              | 1.5      | 18 |
|   | 548    | 42592.857                    | -12.25                | 0.65     | 20 | 1534 B | 35390.906      | +0.7              | 1.5      | 14 |
|   |        | 42741.896                    | -11.30                | 0.88     | 16 |        | 35400.758      | +3.1              | 2.1      | 16 |
|   |        | 43341.844                    | -12.72                | 0.40     | 25 |        | 35736.808      | +4.1              | 2.4      | 17 |
|   |        | 43439.737                    | -14.65                | 0.83     | 20 |        | 35743.854      | +5.5              | 1.8      | 22 |
|   |        | 43501.520                    | -12.64                | 0.46     | 27 |        | 35749.776      | +2.2              | 1.8      | 22 |
|   |        | 43544.516                    | -15.01                | 0.49     | 22 |        | 35751.251      | +3.2              | 1.5      | 18 |
|   |        | 43810.704                    | -14.67                | 0.44     | 24 | 12533  | 40454.892      | -10.6             | 0.3      | 26 |
|   |        | 43852.532                    | -13.05                | 0.55     | 20 | 1630   | 40468.894      | -10.9             | 0.3      | 26 |
|   |        | 44475.908                    | -12.03                | 0.55     | 26 |        | 41605.640      | -12.0             | 0.3      | 25 |
|   |        | 45378.465                    | -13.31                | 0.50     | 29 |        | 42312.797      | -11.00            | 0.34     | 27 |
|   |        | 45608.739                    | -13.10                | 0.46     | 29 |        | 43501.445      | -12.46            | 0.28     | 26 |
|   | 6540   | 35364.956                    | +8.3                  | 1.5      | 21 | 10004  | 44097.902      | -12.00            | 0.42     | 27 |
|   | 915    | 35367.885                    | +7.4                  | 1.0      | 10 | 13994  | 40461.844      | -12.1             | 1.2      | 12 |
|   |        | 35743.778                    | +6.7                  | 0.9      | 15 | 1753   | 41955.825      | -11.9             | 0.4      | 31 |
|   | 7864   | 42732.669                    | -27.25                | 0.50     | 25 |        | 42340.716      | -14.1             | 0.4      | 25 |
|   | 1053   | 44615.556                    | -29.06                | 0.46     | 27 |        | 43501.652      | -13.28            | 0.42     | 24 |
|   | 7927   | 35364.909                    | -17.08                | 1.19     | 20 |        | 43880.539      | -14.53            | 0.44     | 26 |
|   | 1073   | 35401.583                    | -21.04                | 1.80     | 25 | 1550.4 | 44202.672      | -13.06            | 0.33     | 27 |
|   |        | 40440.870                    | -25.09                | 0.70     | 15 | 15524  | 42753.623      | +10.08            | 2.61     | 6  |
|   |        | 42312.839                    | -29.09                | 1.67     | 14 | 1904   | 43194.581      | -6.86             | 3.44     | 10 |
|   |        | 42424.497                    | -26.01                | 0.92     | 18 |        | 43390.867      | -3.61             | 2.42     | 11 |
|   |        | 43501.585                    | -26.67                | 0.95     | 17 |        | 43810.792      | -14.03            | 3.04     | 9  |
|   |        | 43810.737                    | -30.90                | 1.01     | 20 |        | 45203.879      | -23.27            | 4.42     | 22 |
| - |        |                              |                       |          |    |        | 45217.911      | -27.27            | 3.41     | 22 |

 ${\bf Table \ 1.} \ {\rm RV} \ {\rm measurements} \ {\rm of \ stars} \ {\rm from \ the \ ADS \ Catalogue.}$ 

Table 1. Continued.

| Stor          | ID                | V                          | 6                   | N               | Stor            | ID                | V                          | 6            | N               |
|---------------|-------------------|----------------------------|---------------------|-----------------|-----------------|-------------------|----------------------------|--------------|-----------------|
| HD/ADS        | 3D <sub>Hel</sub> | $(\text{kms}^{-1})$        | $(\pm)$             | ΙN              | HD/ADS          | 3D <sub>Hel</sub> | $(\text{km}^{-1})$         | $(\pm)$      | 11              |
| 16028         | 41583.874         | (KIIIS )<br>6.3            | $\frac{(\pm)}{0.3}$ | 24              | IID/ADS         | 45302 520         |                            | $(\pm)$      | 20              |
| 106/          | 41505.074         | -0.5                       | 0.5                 | 24              | 46328           | 40392.029         | +30.00                     | 1 16         | 29<br>25        |
| 1904          | 49494 450         | 1.02.05                    | 0.22                | 97              | 40328<br>5176   | 41955.907         | $\pm 32.21$                | 1.10         | 20              |
| 10895         | 42424.459         | $\pm 25.00$                | 0.00                | 21<br>99        | 49220           | 40015 714         | +6.76                      | 0 50         | 20              |
| 2081          | 42700.900         | +20.24                     | 0.43                | 22              | 40529           | 40915.714         | +0.70                      | 0.00         | 20<br>20        |
|               | 45001.000         | +23.17                     | 0.42                | 21              | 0301            | 40910.012         | +1.21                      | 0.37         | 20<br>20        |
|               | 43031.303         | $\pm 21.02$                | 0.44                | 21              | 57044           | 40965.050         | +1.10                      | 0.01         | 20<br>11        |
|               | 44231.074         | +20.22                     | 0.42                | 21<br>96        | 57044           | 43000.002         | -34.00                     | 2.10         | 11              |
|               | 45210.900         | +24.10<br>+ 92.79          | 0.02                | 20              | 62500           | 40015 799         | 1 66                       | 0.67         | າວ              |
| 17506         | 43231.939         | +23.78                     | 0.39                | 20              | 62309           | 40915.788         | +1.00                      | 0.07         | 20<br>20        |
| 17500<br>0157 | 41955.804         | -0.9                       | 0.4                 | 20<br>26        | 0333            | 40957.900         | +3.09<br>+2.74             | 0.41<br>0.47 | 20<br>20        |
| 2107          | 42424.470         | -0.40                      | 0.40                | 20              |                 | 40965.047         | +2.14                      | 0.47         | 20<br>20        |
|               | 44475.897         | -2.58                      | 0.49                | 27              | 71115           | 41408.583         | +3.07                      | 0.02         | 28              |
|               | 45210.900         | -2.10                      | 0.00                | 20              | 6905            | 43420.020         | +15.10                     | 0.74         | 21              |
| 22062         | 40201.929         | -0.05                      | 0.89                | 21<br>16        | 71159           | 41709 759         | + 1 4 00                   | 1 69         | 94              |
| 22903         | 30300.094         | -33.8<br>27 F              | 1.9                 | 10              | (1102<br>2011 A | 41705.755         | +14.09                     | 1.03         | 24<br>99        |
| 2701          | 35311.031         | -37.5                      | 1.0                 | 22<br>91        | 0011 A          | 42755.000         | +19.40                     | 1.70         | 22<br>20        |
|               | 33743.907         | -39.0                      | 1.0                 | 21              |                 | 42601.004         | +0.00                      | 1.10         | 20<br>27        |
|               | 42/00.100         | -55.51                     | 0.00                | 21              |                 | 43139.734         | +17.20                     | 1.00         | 21              |
| 22012         | 40000.000         | -35.08                     | 1.10                | 20<br>25        |                 | 43330.073         | +11.04                     | 1.00         | 20<br>92        |
| 22912         | 45440.745         | -22.08                     | 0.70                | 20              |                 | 43000.743         | +14.03                     | 1.00         | 20              |
| 2710          | 43000.004         | -28.02                     | 0.44                | 21              |                 | 44210.832         | +14.49<br>+15.26           | 1.90         | 20              |
| 23893         | 41970.843         | $\pm 20.04$<br>$\pm 25.52$ | 0.55                | 21              |                 | 44279.044         | +15.50                     | 1.90         | 21              |
| 2330          | 43034.878         | $\pm 27.88$                | 0.55                | $\frac{20}{25}$ |                 | 44505.715         | $\pm 10.05$<br>$\pm 10.47$ | 2.21<br>2.00 | 24<br>91        |
|               | 45608 016         | $\pm 27.00$<br>$\pm 25.75$ | 0.44                | $\frac{20}{26}$ |                 | 44008.130         | $\pm 1/88$                 | 1.38         | 21              |
|               | 45637 795         | $\pm 23.10$                | 0.31                | $\frac{20}{27}$ |                 | 45378 747         | $\pm 10.12$                | 1.00<br>1.97 | $\frac{20}{27}$ |
| 26965         | 40822 906         | -42.22                     | 0.50<br>0.52        | $\frac{21}{27}$ |                 | 45392 647         | +17.12<br>+17.47           | 1 16         | 25              |
| 3093          | 40866 798         | -4370                      | 0.02<br>0.47        | 26              |                 | 45637 929         | +18.59                     | 1.10         | $\frac{20}{23}$ |
| 0000          | 41583 905         | -45.24                     | 0.43                | $\frac{20}{27}$ | 71153           | 42851 651         | +14.54                     | 1.01         | 23              |
|               | 41668.682         | -43.25                     | 0.40                | 26              | 6811 B          | 44216.807         | +15.39                     | 1.05         | $\frac{20}{26}$ |
|               | 41955.886         | -43.93                     | 0.34                | $\frac{-0}{27}$ | 0011 2          | 44279.755         | +17.83                     | 1.24         | $\frac{20}{27}$ |
|               | 42340.824         | -43.62                     | 0.43                | $\frac{-}{27}$  |                 | 44335.634         | +16.01                     | 1.94         | $\frac{-1}{26}$ |
| 32092         | 41976.923         | -6.71                      | 0.33                | 26              |                 | 44678.649         | +15.94                     | 1.04         | $\frac{-6}{25}$ |
| 3608          | 42102.503         | -6.39                      | 0.38                | 27              |                 | 45378.691         | +19.42                     | 0.78         | $\frac{-0}{27}$ |
| 0000          | 42823.588         | -6.82                      | 0.38                | 27              | 71369           | 43501.803         | +17.88                     | 0.77         | $\frac{-}{28}$  |
|               | 43544.563         | -8.31                      | 0.62                | $24^{-1}$       | 6830            |                   | 1 - 1 - 0 0                |              |                 |
|               | 43572.551         | -7.12                      | 0.62                | 24              | 74442           | 42717.690         | +18.36                     | 0.38         | 21              |
|               | 44202.871         | -9.13                      | 0.70                | 27              | 6967            | 42885.389         | +16.26                     | 0.36         | 22              |
|               | 44216.715         | -7.54                      | 0.52                | 27              | 82381           | 44251.699         | +18.42                     | 0.56         | 26              |
|               | 45378.567         | -7.18                      | 0.98                | 28              | 7416            |                   |                            |              | -               |
|               | 45420.533         | -8.28                      | 0.62                | 28              | 87822           | 41345.783         | -14.10                     | 0.62         | 27              |
|               | 45637.888         | -6.59                      | 0.58                | 29              | 7651            | 41380.681         | -11.95                     | 0.80         | 23              |
| 36044         | 41976.891         | +43.45                     | 0.44                | 27              |                 | 42060.821         | -8.98                      | 0.38         | 27              |
| 4086          | 43446.889         | +41.50                     | 0.70                | 27              |                 | 42753.914         | -5.64                      | 0.53         | 27              |

| Table 1. | Continued. |
|----------|------------|

| Star      | $\mathrm{JD}_{\mathrm{Hel}}$ | $V_{\rm r}$           | $\sigma$ | Ν   | Star     | $\mathrm{JD}_{\mathrm{Hel}}$ | $V_{\rm r}$           | $\sigma$ | N  |
|-----------|------------------------------|-----------------------|----------|-----|----------|------------------------------|-----------------------|----------|----|
| HD/ADS    | 2400000+                     | $(\mathrm{kms}^{-1})$ | $(\pm)$  |     | HD/ADS   | 2400000 +                    | $(\mathrm{kms}^{-1})$ | $(\pm)$  |    |
| 87822     | 42837.732                    | -6.77                 | 0.47     | 25  | 106365 B | 35979.640                    | +5.9                  | 3.1      | 15 |
| 7651      | 43229.645                    | -6.69                 | 0.68     | 20  | 8470 B   |                              |                       |          |    |
|           | 43243.609                    | -7.51                 | 0.61     | 21  | 106690   | 40600.815                    | -17.7                 | 0.6      | 18 |
|           | 43558.740                    | -7.95                 | 0.58     | 23  | 8489     | 40677.826                    | -12.4                 | 1.2      | 19 |
|           | 43572.711                    | -7.41                 | 0.71     | 20  |          | 40684.847                    | -17.2                 | 2.4      | 15 |
|           | 43628.682                    | -6.42                 | 0.67     | 22  |          | 40691.715                    | -19.1                 | 1.5      | 21 |
|           | 43915.782                    | -13.65                | 0.37     | 26  |          | 40747.603                    | -14.7                 | 0.4      | 19 |
|           | 44678.716                    | -9.22                 | 0.31     | 27  |          | 40950.865                    | -14.6                 | 0.3      | 26 |
|           | 44692.607                    | -9.00                 | 0.40     | 27  |          | 40992.776                    | -14.5                 | 0.4      | 25 |
|           | 45049.688                    | -7.42                 | 0.33     | 29  |          | 41048.740                    | -15.2                 | 0.3      | 24 |
|           | 45378.770                    | -4.20                 | 0.42     | 29  |          | 41345.863                    | -15.5                 | 0.3      | 26 |
|           | 45392.681                    | -5.68                 | 0.35     | 29  |          | 41443.691                    | -16.8                 | 0.3      | 22 |
|           | 45637.963                    | -6.36                 | 0.46     | 28  | 107341   | 42921.620                    | +1.70                 | 0.64     | 31 |
|           | 47554.808                    | -15.07                | 0.98     | 19  | 8516     |                              |                       |          |    |
|           | 47565.812                    | -15.86                | 1.53     | 21  | 107700   | 35207.722                    | +6.5                  | 1.9      | 11 |
|           | 47575.793                    | -13.91                | 1.11     | 26  | 8530     | 35281.601                    | +6.1                  | 2.5      | 10 |
|           | 47582.715                    | -16.45                | 1.87     | 25  | 109511   | 41020.717                    | +1.28                 | 0.33     | 20 |
|           | 47587.644                    | -15.72                | 1.62     | 27  | 8600 A   | 41331.960                    | +1.85                 | 0.55     | 23 |
|           | 47593.654                    | -15.66                | 0.76     | 29  |          | 42172.665                    | +2.53                 | 0.46     | 24 |
|           | 47594.695                    | -15.11                | 1.13     | 29  |          | 43159.823                    | +3.74                 | 0.46     | 24 |
|           | 47598.661                    | -12.66                | 1.19     | 25  |          | 45378.839                    | +2.15                 | 0.55     | 28 |
|           | 47612.656                    | -14.52                | 1.05     | 29  | 109510   | 40992.836                    | -45.42                | 4.51     | 12 |
| 101177    | 42060.859                    | -18.13                | 0.62     | 28  | 8600 B   |                              | +42.90                | 0.70     | 23 |
| 8250      | 42753.958                    | -17.68                | 0.56     | 29  |          | 41020.761                    | -10.20                | 4.28     | 6  |
|           | 43558.808                    | -16.89                | 0.46     | 28  |          |                              | +72.19                | 0.59     | 25 |
|           | 43880.843                    | -20.95                | 0.46     | 27  |          | 42060.959                    | -44.20                | 0.61     | 11 |
|           | 44692.662                    | -16.38                | 0.67     | 28  |          |                              | +61.53                | 4.37     | 11 |
|           | 44727.636                    | -17.53                | 0.37     | 29  |          | 42172.651                    | -91.91                | 5.28     | 8  |
|           | 45049.750                    | -16.78                | 0.28     | 29  |          |                              | +73.70                | 0.40     | 25 |
|           | 45378.793                    | -17.62                | 0.30     | 29  |          | 43159.906                    | -51.36                | 0.68     | 25 |
|           | 47554.881                    | -18.34                | 0.44     | 23  |          |                              | +58.68                | 3.85     | 14 |
|           | 47575.896                    | -17.10                | 0.61     | 26  | 112033   | 41020.805                    | -7.68                 | 0.38     | 25 |
|           | 47582.807                    | -16.82                | 0.50     | 26  | 8695     | 41034.785                    | -8.67                 | 0.44     | 24 |
|           | 47593.730                    | -16.62                | 0.52     | 27  |          | 41331.933                    | -9.22                 | 0.59     | 22 |
|           | 47594.757                    | -17.25                | 0.95     | 27  |          | 42165.641                    | -6.76                 | 0.56     | 25 |
|           | 47598.765                    | -17.83                | 0.73     | 27  |          | 43243.658                    | -6.52                 | 0.47     | 25 |
| 100 100 P | 47612.743                    | -19.15                | 0.92     | 26  |          | 43943.759                    | -10.66                | 0.40     | 27 |
| 103483 B  | 42060.892                    | -13.07                | 1.13     | 23  |          | 43978.656                    | -9.52                 | 0.40     | 27 |
| 8347 B    | 43558.909                    | -10.13                | 1.63     | 27  |          | 44279.889                    | -8.26                 | 0.42     | 27 |
| 103498    | 41331.890                    | -12.53                | 1.85     | 24  |          | 44363.651                    | -8.19                 | 0.50     | 28 |
| 8347 D    | araac = ( c                  | 10.00                 | 0.0=     | 0.1 | 110002   | 45503.607                    | -3.47                 | 0.76     | 31 |
| 106365    | 35392.746                    | -13.86                | 0.67     | 31  | 113022   | 42851.710                    | +4.25                 | 0.74     | 25 |
| 8470 A    |                              |                       |          |     | 8735     | 42926.956                    | -2.70                 | 1.38     | 21 |
|           |                              |                       |          |     |          | 43194.807                    | +0.35                 | 0.71     | 25 |

Table 1. Continued.

| Star       | JDHal     | V.                    | σ       | Ν  | Star    | JDHal     | V.                    | σ       | N  |
|------------|-----------|-----------------------|---------|----|---------|-----------|-----------------------|---------|----|
| HD/ADS     | 2400000+  | $(\mathrm{kms}^{-1})$ | $(\pm)$ | 1, | HD/ADS  | 2400000+  | $(\mathrm{kms}^{-1})$ | $(\pm)$ | 1. |
| 113022     | 43271.672 | -1.72                 | 0.71    | 24 | 9626 A  | 45503.646 | -8.03                 | 3.96    | 13 |
| 8735       | 43915.837 | -11.69                | 0.67    | 27 | 137392  | 41048.819 | -8.94                 | 0.51    | 29 |
|            | 43978.697 | +0.19                 | 0.64    | 24 | 9626 BC | 42171.767 | -8.66                 | 0.53    | 29 |
|            | 44363.684 | +0.86                 | 0.53    | 28 |         | 44363.786 | -7.54                 | 0.27    | 25 |
|            | 45196.795 | -5.3                  | 1.3     | 23 |         | 44727.737 | -8.47                 | 0.44    | 29 |
|            | 45245.635 | +3.7                  | 1.3     | 17 |         | 45378.978 | -10.05                | 0.58    | 29 |
| 119124     | 42851.782 | -12.55                | 0.44    | 27 |         | 45503.696 | -9.26                 | 0.50    | 29 |
| 8992       | 42922.542 | -13.07                | 0.84    | 17 | 144064  | 43271.791 | + 8.71                | 1.0     | 31 |
|            | 43194.901 | -13.10                | 0.64    | 26 | 9908    |           |                       |         |    |
|            | 43229.705 | -13.98                | 0.36    | 25 | 145931  | 40691.750 | -24.5                 | 1.18    | 15 |
|            | 44678.760 | -13.49                | 0.42    | 29 | 9962    |           |                       |         |    |
| 123408     | 35197.860 | -4.6                  | 1.5     | 14 | 147165  | 40426.576 | +2.91                 | 5.03    | 12 |
| 9112       | 35240.688 | -1.7                  | 1.6     | 16 | 10009   | 40670.836 | -21.98                | 2.60    | 9  |
|            | 45392.828 | -5.39                 | 0.40    | 31 | 149930  | 45392.895 | -45.28                | 0.50    | 28 |
| 126129     | 41331.982 | -23.16                | 1.64    | 8  | 10127   |           |                       |         |    |
| 9247       | 41380.829 | -26.20                | 7.78    | 7  | 150450  | 35244.692 | -57.7                 | 1.8     | 15 |
|            | 41464.701 | -16.21                | 6.05    | 7  | 10144   | 35302.607 | -56.7                 | 1.6     | 19 |
|            | 41471.575 | -30.85                | 2.10    | 8  |         | 35351.573 | -59.3                 | 1.9     | 15 |
|            | 43159.978 | -30.15                | 2.64    | 7  | 152863  | 41843.694 | -0.1                  | 0.4     | 23 |
| 127665     | 35207.764 | -14.6                 | 1.2     | 18 | 10259   | 42164.834 | -1.74                 | 0.33    | 29 |
| 9296       | 35245.649 | -16.6                 | 1.8     | 19 |         | 42851.870 | -1.28                 | 0.45    | 27 |
| 131041     | 41020.876 | -38.70                | 0.74    | 31 |         | 42976.000 | -0.34                 | 0.39    | 29 |
| $9406 \ A$ | 42172.684 | -31.15                | 0.83    | 31 |         | 44727.778 | -2.05                 | 0.42    | 27 |
|            | 44335.770 | -32.52                | 0.80    | 27 |         | 45392.941 | -2.29                 | 0.42    | 29 |
|            | 45378.950 | -31.61                | 1.23    | 31 | 153882  | 41048.874 | -31.36                | 1.84    | 17 |
| 131041     | 41020.907 | -5.96                 | 1.23    | 31 | 10310   | 43628.845 | -34.26                | 2.12    | 17 |
| $9406 \ B$ | 42172.702 | -29.28                | 0.67    | 31 | 155103  | 41034.933 | -32.86                | 1.45    | 10 |
|            | 45378.924 | -30.23                | 0.65    | 30 | 10360   | 43229.910 | -31.34                | 3.08    | 15 |
| 135364     | 43243.831 | -20.30                | 0.83    | 30 |         | 43628.803 | -31.02                | 3.25    | 16 |
| 9539       | 45496.683 | -22.45                | 0.59    | 31 |         | 43943.942 | -29.05                | 1.76    | 12 |
| 135722     | 41478.578 | -10.4                 | 0.4     | 23 |         | 44041.743 | -33.39                | 2.18    | 18 |
| 9559       |           |                       |         |    | 157910  | 42961.922 | -18.59                | 0.65    | 20 |
| 136202     | 42557.732 | +50.88                | 1.36    | 22 | 10535   | 44678.907 | -17.66                | 0.74    | 31 |
| 9584       | 42581.827 | +52.88                | 0.47    | 25 | 159466  | 36100.559 | -53.8                 | 1.6     | 16 |
|            | 42886.507 | +53.77                | 0.37    | 24 | 10633   | 42976.672 | -59.65                | 0.62    | 31 |
|            | 42907.711 | +52.18                | 0.70    | 27 | 160835  | 35907.883 | -37.1                 | 1.9     | 7  |
|            | 43194.970 | +53.60                | 0.46    | 27 | 10715   | 41843.767 | -36.35                | 2.77    | 22 |
|            | 43355.574 | +52.95                | 0.38    | 30 |         | 42164.858 | -40.48                | 0.56    | 31 |
|            | 43628.736 | +53.64                | 0.28    | 27 |         | 44727.817 | -40.05                | 0.42    | 27 |
|            | 43943.813 | +52.10                | 0.38    | 27 | 161797  | 42200.715 | -18.11                | 0.67    | 31 |
|            | 44229.966 | +53.58                | 0.37    | 27 | 10786   | 42969.630 | -15.84                | 0.68    | 31 |
| 137391     | 42171.788 | -11.69                | 3.74    | 11 |         | 43229.928 | -18.21                | 0.56    | 31 |
| 9626 A     | 44342.877 | -7.35                 | 3.76    | 10 |         | 44041.680 | -20.36                | 0.58    | 31 |
|            | 44363.825 | -10.62                | 5.08    | 13 |         | 44118.541 | -15.41                | 0.56    | 31 |

Table 1. Continued.

| Star   | $JD_{Hel}$ | $V_{\rm r}$           | $\sigma$ | Ν  | Star   | $JD_{Hel}$ | $V_{\rm r}$           | σ       | Ν  |
|--------|------------|-----------------------|----------|----|--------|------------|-----------------------|---------|----|
| HD/ADS | 2400000+   | $(\mathrm{kms}^{-1})$ | $(\pm)$  |    | HD/ADS | 2400000+   | $(\mathrm{kms}^{-1})$ | $(\pm)$ |    |
| 10786  | 45217.517  | -18.91                | 0.50     | 31 | 186704 | 35401.538  | -10.0                 | 1.5     | 11 |
| 165590 | 42164.885  | -20.39                | 2.83     | 13 | 12882  | 44083.786  | -5.80                 | 0.79    | 28 |
| 11060  | 43355.660  | -17.67                | 2.71     | 12 | 187013 | 42592.786  | +4.48                 | 0.44    | 26 |
|        | 45217.562  | -27.76                | 2.61     | 12 | 12913  | 42886.606  | +3.74                 | 0.49    | 23 |
|        | 45559.665  | -26.26                | 2.49     | 13 |        | 42891.543  | +2.63                 | 0.34    | 23 |
| 168092 | 35369.578  | -39.4                 | 6.7      | 3  |        | 42969.671  | +3.81                 | 0.37    | 25 |
| 11213  | 35373.583  | -86.0                 | 6.2      | 6  |        | 43341.738  | +4.93                 | 0.50    | 26 |
| 168656 | 40412.614  | +6.4                  | 0.6      | 17 |        | 44041.763  | +0.74                 | 0.36    | 28 |
| 11271  |            |                       |          |    |        | 44363.837  | +5.08                 | 0.43    | 26 |
| 171586 | 42977.698  | +4.71                 | 2.71     | 17 |        | 44552.472  | +4.95                 | 0.52    | 27 |
| 11477  | 43327.671  | -1.04                 | 1.81     | 13 |        | 45224.646  | +3.11                 | 0.40    | 33 |
|        | 45496.785  | +0.50                 | 4.83     | 13 |        | 45496.858  | +6.70                 | 0.44    | 27 |
| 171767 | 35343.647  | -39.6                 | 1.5      | 10 | 187638 | 42200.828  | +7.00                 | 0.46    | 29 |
| 11494  | 40747.704  | -24.9                 | 2.2      | 15 | 12992  | 43012.632  | +8.24                 | 0.62    | 29 |
|        | 42977.775  | -21.25                | 0.83     | 28 |        | 44041.809  | +2.20                 | 0.47    | 29 |
|        | 43327.354  | -23.60                | 0.86     | 27 |        | 44783.745  | +7.87                 | 0.38    | 27 |
| 172748 | 40412.657  | -42.60                | 0.87     | 29 |        | 45147.811  | +6.38                 | 0.50    | 29 |
| 11581  | 40454.592  | -34.57                | 1.22     | 26 |        | 45503.796  | +6.80                 | 0.56    | 29 |
|        | 40468.540  | -30.36                | 0.99     | 29 |        | 45637.489  | +6.32                 | 0.46    | 29 |
|        | 41583.505  | -30.74                | 1.05     | 29 | 187691 | 45231.607  | -0.14                 | 0.55    | 29 |
|        | 42200.852  | -41.16                | 2.71     | 29 | 13012  |            |                       |         |    |
| 174897 | 42921.837  | +12.34                | 0.76     | 27 | 187849 | 40468.578  | -40.1                 | 0.3     | 24 |
| 11773  | 44727.858  | +10.79                | 0.33     | 27 | 13014  | 40796.705  | -37.3                 | 0.6     | 16 |
| 175588 | 35373.604  | -33.8                 | 1.2      | 16 |        | 42634.751  | -39.98                | 0.56    | 25 |
| 11825  | 40405.674  | -29.2                 | 0.4      | 22 |        | 44041.839  | -41.59                | 0.52    | 26 |
|        | 40412.688  | -26.5                 | 0.7      | 22 |        | 44433.779  | -41.32                | 0.37    | 27 |
| 182955 | 40691.782  | -30.4                 | 2.4      | 18 |        | 44783.772  | -40.81                | 0.58    | 24 |
| 12445  | 40440.653  | -32.0                 | 0.4      | 21 |        | 45608.559  | -38.36                | 0.53    | 25 |
|        | 40454.648  | -32.6                 | 0.3      | 24 | 189577 | 40468.619  | -18.15                | 0.74    | 26 |
|        | 40461.572  | -32.2                 | 0.6      | 13 | 13230  | 40813.678  | -21.02                | 1.56    | 16 |
|        | 40712.824  | -32.0                 | 0.4      | 16 | 190147 | 42613.742  | +0.38                 | 1.38    | 17 |
|        | 40733.754  | -31.4                 | 0.4      | 17 | 13278  | 42962.901  | +1.05                 | 0.68    | 21 |
|        | 40755.792  | -31.4                 | 0.6      | 21 |        | 44363.858  | -1.35                 | 0.40    | 27 |
|        | 40813.593  | -31.5                 | 0.6      | 19 | 194093 | 31377.565  | -3.39                 | 1.56    | 16 |
|        | 45553.740  | -30.64                | 0.55     | 27 | 13765  | 38667.556  | -9.19                 | 0.58    | 19 |
| 183589 | 41548.671  | -12.1                 | 0.3      | 20 |        | 38669.535  | -7.54                 | 0.77    | 19 |
| 12520  | 41843.835  | -9.87                 | 1.62     | 19 |        | 38670.527  | -7.00                 | 0.65    | 20 |
| 185194 | 35245.861  | -34.5                 | 1.2      | 19 |        | 42200.861  | -6.05                 | 0.80    | 23 |
| 12693  | 35377.591  | -38.8                 | 0.9      | 17 |        | 42592.803  | -5.40                 | 0.77    | 20 |
|        | 35707.571  | -34.4                 | 1.3      | 20 |        | 42717.224  | -7.62                 | 0.62    | 22 |
|        | 42963.394  | -33.11                | 0.61     | 23 |        | 42891.586  | -7.22                 | 0.92    | 25 |
|        | 45496.837  | -32.69                | 0.58     | 29 |        | 42897.570  | -7.96                 | 4.45    | 23 |
| 185622 | 40677.890  | -3.0                  | 1.9      | 16 |        | 42969.708  | -7.36                 | 0.38    | 25 |
| 12750  |            |                       |          |    |        | 42969.713  | -6.26                 | 0.80    | 26 |

Table 1. Continued.

| Star              | $\mathrm{JD}_{\mathrm{Hel}}$ | $V_{ m r}$            | $\sigma$ | Ν        | Star            | $\mathrm{JD}_{\mathrm{Hel}}$ | $V_{\rm r}$           | σ       | Ν               |
|-------------------|------------------------------|-----------------------|----------|----------|-----------------|------------------------------|-----------------------|---------|-----------------|
| $\mathrm{HD}/ADS$ | 2400000 +                    | $(\mathrm{kms}^{-1})$ | $(\pm)$  |          | HD/ADS          | 2400000 +                    | $(\mathrm{kms}^{-1})$ | $(\pm)$ |                 |
| 194093            | 43327.858                    | -8.28                 | 0.68     | 26       | 204599          | 35369.675                    | -24.1                 | 1.8     | 15              |
| 13765             | 43439.599                    | -7.54                 | 0.73     | 26       | 14998           | 41906.757                    | -22.7                 | 0.6     | 28              |
|                   | 43831.536                    | -8.52                 | 0.49     | 21       | 206778          | 35389.646                    | +4.48                 | 2.67    | 21              |
|                   | 44041.673                    | -9.39                 | 0.63     | 25       | 15268           | 35392.577                    | +5.7                  | 1.8     | 16              |
|                   | 44097.821                    | -8.10                 | 0.40     | 25       |                 | 40502.605                    | +6.6                  | 0.4     | 20              |
|                   | 44118.562                    | -6.80                 | 0.42     | 27       |                 | 40747.847                    | +4.1                  | 0.9     | 19              |
|                   | 44202.500                    | -7.65                 | 0.47     | 26       |                 | 41162.822                    | +4.7                  | 0.2     | 27              |
|                   | 44342.910                    | -6.29                 | 0.44     | 26       |                 | 41548.742                    | +8.3                  | 0.4     | 25              |
|                   | 44363.871                    | -5.83                 | 0.43     | 28       | 208202          | 45608.601                    | +1.35                 | 1.33    | 24              |
|                   | 44475.716                    | -8.20                 | 0.46     | 27       | 15431           |                              |                       |         |                 |
|                   | 44587.461                    | -7.87                 | 0.52     | 25       | 209166          | 42709.867                    | +4.81                 | 0.43    | 26              |
|                   | 44783.864                    | -5.67                 | 0.37     | 27       | 15543           | 42976.857                    | +5.29                 | 0.56    | 25              |
|                   | 44943.480                    | -5.05                 | 0.33     | 27       |                 | 43355.763                    | +4.04                 | 0.37    | 27              |
|                   | 45203.649                    | -7.71                 | 0.40     | 27       |                 | 44202.522                    | +3.57                 | 0.37    | 27              |
|                   | 45210.686                    | -8.99                 | 0.59     | 27       |                 | 44433.824                    | +4.76                 | 0.36    | 27              |
|                   | 45217.602                    | -9.34                 | 0.74     | 27       | 209693          | 43012.700                    | -22.27                | 0.31    | 27              |
|                   | 45496.864                    | -6.01                 | 0.61     | 27       | 15602           | 43054.654                    | -22.26                | 0.44    | 27              |
| 196197            | 44783.831                    | +7.27                 | 0.44     | 27       |                 | 44475.735                    | -23.35                | 0.38    | 27              |
| 14027             |                              |                       |          | ~ -      |                 | 44587.505                    | -22.82                | 0.38    | 27              |
| 196758            | 42976.737                    | -47.25                | 0.76     | 27       |                 | 45553.847                    | -22.19                | 0.67    | 28              |
| 14108             | 43341.772                    | -45.20                | 0.77     | 28       | 210461          | 41906.794                    | -43.88                | 0.40    | 27              |
| 198134            | 40412.795                    | -25.17                | 0.68     | 29       | 15690           | 43446.505                    | -44.99                | 0.49    | 27              |
| 14290             | 40747.829                    | -21.29                | 1.22     | 22       | 211073          | 41927.716                    | -9.71                 | 0.64    | 25              |
|                   | 40813.747                    | -24.43                | 1.19     | 26       | 15758           | 42592.840                    | -11.23                | 0.56    | 26              |
| 10000             | 41216.662                    | -25.66                | 0.68     | 29       |                 | 42976.829                    | -11.52                | 0.61    | 27              |
| 198387            | 42962.959                    | -36.53                | 0.67     | 22       |                 | 43001.525                    | -11.44                | 0.60    | 18              |
| 14322             | 44097.853                    | -44.46                | 0.28     | 27       |                 | 43390.737                    | -9.35                 | 0.58    | 26              |
|                   | 44475.694                    | -43.28                | 0.44     | 27       |                 | 44943.495                    | -11.43                | 0.33    | 29              |
|                   | 45210.720                    | -43.61                | 0.50     | 29       |                 | 45147.852                    | -10.80                | 0.33    | 27              |
| 100004            | 45559.754                    | -43.56                | 0.38     | 28       |                 | 45224.678                    | -12.00                | 0.63    | 24              |
| 198624            | 41642.465                    | -16.40                | 1.13     | 26       |                 | 45503.862                    | -10.13                | 0.42    | 29              |
| 14345             | 10050 505                    | 00.00                 | 0.05     | 00       | 011150          | 45637.554                    | -10.49                | 0.50    | 25              |
| 199442            | 42976.787                    | -26.96                | 0.65     | 28       | 211153          | 44475.778                    | +17.07                | 0.40    | 27              |
| 14457             | 45231.669                    | -25.81                | 0.80     | 28       | 15771           | 45608.649                    | +14.75                | 0.41    | 28              |
| 200405            | 41885.757                    | -8.40                 | 0.74     | 23       | 211300          | 418/8./03                    | -3.20                 | 0.47    | 27              |
| 14307             | 45203.097                    | -10.51                | 0.74     | 29       | 13704           | 42903.317                    | -2.88                 | 0.62    | 21              |
| 002504            | 40469 600                    | -10.00                | 0.50     | 29       | 014CCF          | 43037.009                    | -4.20                 | 0.02    | 29<br>96        |
| 203004            | 40408.099                    | -11.31                | 0.52     | 29<br>97 | 214005<br>16110 | 40404.744                    | +1.1                  | 0.3     | 20<br>96        |
| 14909             | 42092.017                    | -77.40                | 0.50     | 21       | 10140           | 40408.750                    | +1.0                  | 0.3     | 20<br>92        |
|                   | 42921.041                    | -70.00                | 0.11     | 19<br>19 | 015979          | 40454 760                    | +0.09                 | 0.04    | 20<br>96        |
|                   | 40000.970                    | -19.01                | 0.39     | 10       | 16007           | 40404.709                    | +11.0                 | 0.4     | 20<br>26        |
|                   | 40000.101                    | -11.98                | 0.70     | 20<br>27 | 10227           | 41921.130                    | +14.12<br>+ 19.94     | 0.40    | $\frac{20}{27}$ |
|                   | 44433.870                    | -10.83                | 0.40     | 21       |                 | 42703.405                    | +13.34                | 0.47    | 21              |
|                   | 40003.845                    | -11.09                | 0.00     | 29       |                 |                              |                       |         |                 |

Table 1. Continued.

| Star   | JD <sub>Hol</sub> | Vr                    | σ       | Ν  | Star   | JD <sub>Hel</sub> | Vr                    | σ       | N  |
|--------|-------------------|-----------------------|---------|----|--------|-------------------|-----------------------|---------|----|
| HD/ADS | 2400000+          | $(\mathrm{kms}^{-1})$ | $(\pm)$ |    | HD/ADS | 2400000+          | $(\mathrm{kms}^{-1})$ | $(\pm)$ |    |
| 215373 | 43390.783         | +11.49                | 0.40    | 26 | 218452 | 42753.501         | -8.49                 | 0.62    | 26 |
| 16227  | 45559.804         | +12.81                | 0.26    | 28 | 16526  | 44083.835         | -12.66                | 0.40    | 27 |
| 215549 | 45231.764         | -2.11                 | 0.40    | 29 | 219139 | 35302.848         | +18.0                 | 1.8     | 19 |
| 16248  |                   |                       |         |    | 16603  | 35368.734         | +16.5                 | 1.0     | 16 |
| 216397 | 41878.846         | -17.3                 | 0.6     | 31 | 219449 | 40822.826         | -26.39                | 0.46    | 20 |
| 16325  | 41927.757         | -18.4                 | 0.9     | 25 | 16633  | 42964.557         | -26.37                | 0.90    | 18 |
|        | 45224.697         | -17.12                | 0.68    | 25 |        | 43852.512         | -23.28                | 0.61    | 18 |
| 216916 | 40433.857         | -29.28                | 1.32    | 25 |        | 44202.552         | -29.36                | 0.44    | 27 |
| 16381  | 40822.753         | -33.75                | 1.72    | 22 |        | 44608.452         | -26.19                | 0.38    | 27 |
|        | 41640.527         | +10.43                | 1.32    | 25 | 220007 | 41906.845         | -4.7                  | 0.7     | 24 |
|        | 41878.808         | +20.34                | 1.29    | 26 | 16681  |                   |                       |         |    |
|        | 41927.772         | -10.86                | 1.44    | 22 | 222399 | 41955.721         | -20.6                 | 0.7     | 27 |
| 217906 | 42200.788         | +9.13                 | 0.47    | 27 | 16913  | 42340.685         | -21.45                | 0.67    | 26 |
| 16483  |                   |                       |         |    |        | 42732.560         | -23.64                | 0.93    | 20 |
| 218321 | 43446.574         | -23.40                | 0.82    | 27 |        | 44083.864         | -19.95                | 0.82    | 26 |
| 16520  | 44475.864         | -17.69                | 0.47    | 27 |        | 44202.620         | -21.36                | 0.73    | 26 |
|        | 45217.753         | -16.17                | 0.54    | 27 |        | 45224.799         | -20.29                | 0.98    | 29 |
| 218535 | 45224.728         | -14.72                | 0.89    | 22 |        | 45623.720         | -21.15                | 0.99    | 27 |
| 16525  |                   |                       |         |    | 223582 | 45637.685         | +11.63                | 1.05    | 23 |
|        |                   |                       |         |    | 17038  |                   |                       |         |    |

Notes to Table 1.

- 1 A component: Var [29],  $P(\chi^2) = 0.133$  [9]
- 42 Var [9], SB?,  $P(\chi^2) = 0.001$  [9]
- 161 The system is at least quadruple [25]
  - Var? [3] C component: Var, P = 6.02628 d, e = 0.025 [25]
- 486 B component: Var [5]
- 546 Var [5]
- 548 Var: P = 20157.7 d, e = 0.34 [24], P = 21022.0 d, e = 0.512 [23]
- 1073 Var [1], [29], quintuple system, A component: spectroscopic binary [17]
- 1268 Var [5], SB? [9], Suspected photometric var. NSV 567, Var 5: [12]
- 1459 Var [29]
- 1534 B component: Var? [29]
- 1630 B component: Var: P = 2.67 d, e = 0.29, the system is at least quadruple [25]
- 1753 Var? [5],  $P(\chi^2) = 0.840$  [9]
- 1904 Var? [5]
- 1964 Var? [5],  $P(\chi^2) = 0.155$  [9]
- 2081 Suspected photometric variable NSV 902 [12]

Search for radial velocity variation in visual binary and multiple stars

- 2157 A component: spectroscopic binary [22]
- 2701 Var? [29]
- 2995V 491 Per, photometric variable BY Dra type, P = 7.37 d, B component: suspected photometric variable NSV 1463 [12]
- 3093 C component: flare star DY Eri, a strong X-ray source [22]
- 3608 C component: Var, P = 186.28 d, e = 0.343 [25]
- 5176Var [2], photometric variable of  $\beta$  Cep type [12], [22]
- 5381 Var [2], suspected photometric variable NSV 3183 [12]
- Var, P = 597 d [18], often used as a RV standard [29] 6335
- $P(\chi^2) = 0.378$  [9] 6805
- $P(\chi^2) = 0.134$  [9], suspected photometric variable 6830 NSV 4093 [12], [19]
- 6967  $P(\chi^2) = 0.000000$  [23]
- 7416 A component: spectroscopic binary [22]
- Triple system, var [29], P = 17.765 y,  $T_0 = 1989.133$  [16] 7651
- Var [29], SB, P = 1.730418 d, B component: spectroscopic 8250 binary, P = 23.54167 d, e = 0.4021 [25]
- 8347 SB [24], B component: Var [2], multiple system [13]
- 8470 A component Var? [5], B component: Var [22], P = 100.26 d,
- e = 0.45 [4], erroneous identification of the components in [25] 8489
- A component: spectroscopic binary [22]
- 8516 A component: spectroscopic binary [22]
- 8530 A component: spectroscopic binary, P = 396.54 d, e = 0.566 [25]
- 8600 Ambiguous designation of the A and B components by different authors [1]. B component: spectroscopic binary, P = 7.3361 d, e = 0.26 [25], A and B components: suspected photometric variables (NSV 5745, NSV 5748) [12]
- 8695 Spectroscopic binary, P = 2914 d, e = 0.67 [14]
- 8735Var [2]
- Var? [29] 9112
- Var? [29] 9247
- Var [2],  $P(\chi^2) = 0.055$  [9],  $P(\chi^2) = 0.716359$  [23] 9296
- 9406 A component: Var [2], B component: spectroscopic binary, P = 12.822 d, e = 0.39 [25]
- Var [5]  $P(\chi^2) = 0.000$  [9],  $P(\chi^2) = 0.04107$  [23], const. RV [28], 9559 SB [21], A component: suspected photometric var. NSV 7002 [12]
- 9584 Photometric variable MQ Ser
- A component: spectroscopic binary, P = 298.75 d [17], 9626suspected photometric variable NSV 7063 [12]
- 9962 SB  $P(\chi^2) = 0.000$  [9]
- Spectroscopic binary P = 34.23 d, e = 0.36 [25], A component: 10009  $\beta$  Cep-type variable [17]
- Suspected photometric variable NSV 7896 [12] 10144
- Var [5], A comp.: spectroscopic binary [22],  $P(\chi^2) = 0.665$  [9] 10259

Var [2], Photometric variable V451 Her [22] 10310 Var? [5],  $P(\chi^2) = 0.855$  [9] 10535Var? [5] 10633

- Var [29], [5],  $P(\chi^2) = 0.780$  [9], spectroscopic binary [22] 10715
- Var [29],  $P(\chi^2) = 0.451$  [9] 10786
- 11060 Quintuple system: A component: P = 0.8795 d, e = 0.05, photometric var. V772 Her, AB component: P = 7397.54 d, e = 0.96, C component: P = 25.7631 d, e = 0.565, photometric variable V885 Her [25]
- Spectroscopic binary, P = 2.0476 d, e = 0.04 [25] 11213
- $P(\chi^2) = 0.412 \ [9], \ P(\chi^2) = 0.000013 \ [23]$ 11271
- Photometric variable FR Ser 11477
- 11494 Spectroscopic binary, P = 1510.3 d, e = 0.272 [25]
- Prototype of  $\delta$  Sct variables 11581
- 11773 Var [5]
- Var [29], Photometric variability [12] 11825
- 12445 Var? [5], [12]
- 12520Var? [29], [5], Suspected photometric variable NSV 12088 [12]
- 12693 Var? [29], A component: suspected photometric variable NSV 12213 [12],  $P(\chi^2) = 0.466$  [9]
- A component: spectroscopic binary [22], unknown period [5] 12750
- 12882 Var? [5], B component: flare star [22],
- 12913 Var [2]
- 12992 Var? [29], [5]
- Var [5], A component: photometric variable V1509 Cyg. 13014
- 13230A component: irregular photometric variable VZ Sge.
- 13278 Var? [29]
- Var [29], [5], Suspected photometric variable NSV 13048 [12] 1376514108 SB [21]
- $P(\chi^2) = 0.514$  [9], A component: irregular photometric 14290 var. T Cyg
- 14322 Var? [13]
- 14567 Var? [5]
- 14909 B component: spectroscopic binary, P = 1111 d, e = 0.29 [25]
- 14998 Var? [5]
- Photometric variable  $\epsilon$  Peg [12] 15268
- A component: Var [2],  $P(\chi^2) = 0.053$  [9] 15431
- 15543 Var? [5]
- Var? [5] 15602
- Var? [5],  $P(\chi^2) = 0.762$  [9] 15690
- Spectroscopic binary [22], P = 612 d [18], suspected 15758 photometric variable NSV 14076 [12]
- Var? [5], suspected photometric variable NSV 14078 [12] 15764  $P(\chi^2) = 0.897$  [9]

- 16140 Var? [5], suspected photometric variable NSV 14260 [12]
- 16227 Var [5],  $P(\chi^2) = 0.310$  [9],  $P(\chi^2) = 0.000000$  [23]
- 16325 Var? [5], photometric variable [12]
- 16381 Spectroscopic binary P = 12.096864 d, e = 0.0539. [25], photometric variable EN Lac
- 16483 Var [2],  $P(\chi^2) = 0.401472$  [23], irregular photometric variable  $\beta$  Peg [12]
- 16520 Var [29]
- 16526 Var? [29],  $P(\chi^2) = 0.183$  [9]
- 16603 Short period photometric variable [29]
- 16633 Spectroscopic binary, P = 181 d [18], suspected photometric variable [29]
- 16681 Spectroscopic binary, P = 1520 d, e = 0.51 [25], suspected photometric variable NSV 14506 [12]
- 16913 Var? [5], photometric variable ST And



Figure 1. Measured radial velocities of ADS 7651 arranged in the phase diagram according to ephemeris from Hartkopf et al. (1996), see notes to Table 1. A typical error value of one measurement is depicted in the lower right corner.

In Figure 1 we demonstrate the accuracy of our data in the case of ADS 7651, for which no spectroscopic RV curve has been published up to now. The period (P = 17.765 y) and time of periastron passage were taken from the interferometrically determined orbit by Hartkopf et al. (1996). The triangle represents our observation at JD 2 443 915.782, when probably the B component was observed, as the brightness difference between the A and B components is only

0.3 mag. Another possible explanation of the odd position of our measurement at phase 0.436 is that the period value is half of that published by Hartkopf et al. (1996). The alternative RV curve with the half period value (P = 8.882 y) is shown in Figure 2.



Figure 2. Measured radial velocities of ADS 7651 arranged in the phase diagram according to ephemeris with the half value of the orbital period.

| Star   | $JD_{Hel}$ | $V_{\rm r}$           | σ       | Ν  | Star   | $JD_{Hel}$ | $V_{\rm r}$           | σ       | N  |
|--------|------------|-----------------------|---------|----|--------|------------|-----------------------|---------|----|
| HD/HIP | 2400000+   | $(\mathrm{kms}^{-1})$ | $(\pm)$ |    | HD/HIP | 2400000+   | $(\mathrm{kms}^{-1})$ | $(\pm)$ |    |
| 26     | 41216.806  | -210.37               | 3.71    | 14 | 77247  | 40950.793  | -21.11                | 0.67    | 31 |
| 447    |            |                       |         |    | 44464  | 40992.705  | -20.55                | 0.65    | 30 |
| 6833   | 40812.847  | -246.47               | 1.93    | 14 |        | 41048.569  | -11.46                | 0.65    | 30 |
| 5458   | 40831.869  | -244.02               | 0.40    | 24 |        | 41703.806  | -11.36                | 0.55    | 28 |
| 12929  | 43810.756  | -16.01                | 0.42    | 27 | 101013 | 40950.938  | -11.14                | 0.65    | 27 |
| 9884   |            |                       |         |    | 56731  | 41048.674  | -12.52                | 0.33    | 25 |
| 22649  | 40915.755  | -23.94                | 0.86    | 20 | 101501 | 40950.988  | -6.60                 | 0.53    | 30 |
| 17296  | 40950.486  | -19.83                | 0.52    | 24 | 56997  | 40985.792  | -8.07                 | 0.58    | 30 |
|        | 40985.485  | -17.35                | 0.38    | 20 |        | 41048.618  | -6.36                 | 0.55    | 30 |
| 28033  | 45378.508  | +26.26                | 0.39    | 29 |        | 41422.693  | -6.06                 | 0.65    | 30 |
| 20712  |            |                       |         |    |        | 41443.564  | -3.95                 | 0.67    | 29 |
| 31487  | 40957.685  | -7.14                 | 0.62    | 21 | 139195 | 41048.911  | +0.70                 | 0.76    | 30 |
| 23168  |            |                       |         |    | 76425  | 41345.974  | +1.43                 | 0.50    | 31 |
| 44033  | 40950.562  | +31.08                | 0.95    | 26 |        | 41380.868  | +0.93                 | 0.53    | 30 |
| 30099  | 40985.685  | +30.47                | 1.22    | 25 | 140283 | 42164.799  | -171.57               | 1.26    | 22 |
|        | 41583.924  | +29.49                | 1.10    | 25 | 76976  |            |                       |         |    |

 Table 2. Stars not included in the ADS catalogue.

Table 2. Continued.

| N   |
|-----|
| ÷ , |
|     |
| 14  |
|     |
| 29  |
|     |
| 21  |
|     |
| 27  |
|     |
| 27  |
|     |
| =   |

Notes to Table 2.

| 12929  | Var? $P = 10.96$ d, ampl. 0.24 km/s [26], $P(\chi^2) = 0.000000$ [23] |
|--------|-----------------------------------------------------------------------|
|        | Suspected photometric variable NSV 725 [12]                           |
| 22649  | Spectroscopic binary, $P = 596.21$ d, $e = 0.088$ [25]                |
|        | Photometric variable [8]                                              |
| 28033  | Spectroscopic binary $P = 8.55037$ d, $e = 0.222$ [25]                |
| 31487  | Spectroscopic binary $P = 1066.4 \text{ d}, e = 0.045 \text{ [25]}$   |
| 44033  | Suspected photometric variable NSV 2917 [12]                          |
| 44537  | Var [2], photometric variable $\psi$ Aur [12]                         |
| 45829  | Var [14]                                                              |
| 77247  | Spectroscopic binary $P = 80.53$ d, $e = 0.09$ [25]                   |
| 101013 | Spectroscopic binary $P = 1710.9 \text{ d}, e = 0.195 [25]$           |
| 101501 | Var [29], [12], suspected photometric variable NSV 5291 [12]          |
| 139195 | Spectroscopic binary $P = 5324.0 \text{ d}, e = 0.345 \text{ [25]}$   |
| 140283 | Var? [7], suspected photometric variable NSV 7210 [12]                |
| 171955 | Photometric variable EW Sct                                           |
| 199939 | Spectroscopic binary $P = 584.9 \text{ d}, e = 0.284 \text{ [25]}$    |
| 210745 | Spectroscopic binary $P = 533$ d [18],                                |
|        | Suspected photometric variable NSV 14066 [12]                         |
| 222404 | Spectroscopic binary $P = 24135$ d, $e = 0.389$ [25],                 |
|        | Suspected photometric variable NSV 14566 [12]                         |

**Acknowledgements.** We wish to thank the authorities of the David Dunlap Observatory for the use of the 188 cm reflector and to Prof. D.A. MacRae for the stimulation to continue this work after the unexpected death of Prof. G.A. Bakos. We also thank the staffmembers of the DDO and the Waterloo University Observatory (now named G.A. Bakos Observatory) for measuring some of the spectrograms. We are indebted to the Astronomical Institute of the Slovak Academy of Sciences for their support. This

research has made use of the Washington Double Star Catalog and the Sixth Catalog of Orbits of Visual Binary Stars, maintained at the U.S. Naval Observatory, and of the SIMBAD database, operated at CDS, Strasbourg, France. VEGA grants 2/0038/10 and 2/0074/09 are acknowledged for partial support. Helpful comments of the referree (Dr. D. Chochol) are highly appreciated.

## References

- [1] Abt, H.A.: 1970, Astrophys. J., Suppl. Ser. 19, 387
- [2] Abt, H.A., Biggs, E.S.: 1972, Bibliography of Stellar Radial Velocities, Kitt Peak Natl. Obs., New York
- [3] Abt, H.A., Levy, S.G., Sanwal, N.B.: 1980, Astrophys. J., Suppl. Ser. 43, 549
- [4] Baize, P., Petit, M.: 1989, Astron. Astrophys., Suppl. Ser. 77, 497
- [5] Bakos, G.A.: 1974a, Astron. J. 79, 866
- [6] Bakos, G.A.: 1974b, in Stars and the Milky Way System, ed.: L.N. Mavridis, Springer-Verlag, Berlin Heidelberg New York, 60
- [7] Carney, B.W., Latham, D.W.: 1987, Astron. J. 93, 116
- [8] Catalano, F.A, Leone, F., Vaccari, S.: 1988, Inf. Bull. Variable Stars 3219, 1
- [9] De Medeiros, J.R., Mayor, M.: 1999, Astron. Astrophys., Suppl. Ser. 139, 433
- [10] Doucet, C.D., Bakos, G.A.: 1972, J. R. Astron. Soc. Can. 66, 72
- [11] Eggleton, P.P., Tokovinin, A.A.: 2008, Mon. Not. R. Astron. Soc. 389, 869
- [12] ESA: 1992, The Hipparcos Input Catalogue, ESA SP-1136
- [13] Fouts, G.: 1987, Publ. Astron. Soc. Pac. 99, 986
- [14] Gratton, R.F., Focardi, P., Bandiera, R.: 1989, Mon. Not. R. Astron. Soc. 237, 1085
- [15] Griffin, R.F., Beawers, W.I., Eitter J.J.: 1988, Publ. Astron. Soc. Pac. 100, 358
- [16] Hartkopf, W.I., Mason, B.D., McAlister, H.A.: 1996, Astron. J. 111, 370
- [17] Hartkopf, W.I., Mason, B.D. Worley, C.E.: 2001, Sixth Catalog of Orbits of Visual Binary Stars, http://www.ad.usno.navy.mil/wds/orb6/orb6.html
- [18] Hekker, S., Snellen, I.A.G., Aerts, C., Quirrenbach, A., Reffert, S., Mitchell, D.S.: 2008, Astron. Astrophys. 480, 215
- [19] Jackisch, G.: 1963, Veroeffentlichungen der Sternw. Sonneberg 5, H. 1
- [20] Kamper, K.W., Fullerton, A., Lyons, R.W., Kelly, C., Bates, M.: 1992, DDO Technical Memorandum No. 9
- [21] Malaroda, S., Levato, H., Galliani, S.: 2006, Stellar Radial Velocity Catalogue, Vizier On-line data Catalogue: III/249
- [22] Mason, B.D., Wycoff, G.L., Hartkopf, W.I., 2006, The Washington Double Star Catalog, USNO, Washington, http://ad.usno.navy.mil/wds/
- [23] Massarotti, A., Latham, D.W., Stefanik, R.P., Fogel, J.: 2008, Astron. J. 135, 209
- [24] Popper, D.M.: 1986, Publ. Astron. Soc. Pac. 98, 1312
- [25] Pourbaix, D., Tokovinin, A.A., Batten, A.H., Fekel, F.C., Hartkopf, W.I., Levato, H., Morrell, N.I., Torres, G., Udry, S.: 2004, Astron. Astrophys. 424, 727
- [26] Schaub, W.: 1932, Zeitschrift für Astrophys. 4, 35
- [27] Tokovinin, A.A.: 2008, Mon. Not. R. Astron. Soc. 389, 925
- [28] Toyota, E., Itoh, Y., Ishiguma, S., Urakawa, S., Murata, D., Oasa, Y., Matsuyama, H., Funayama, H., Sato, B., Mukai, T.: 2009, Publ. Astron. Soc. Japan 61, 19
- [29] Tremko, J., Bakos, G.A. et al.: 2010, (This paper)