# Analysis of multicolour light curves of the eclipsing binaries AQ Tuc and AY Vel

D. Chochol<sup>1</sup>, C.J. van Houten<sup>2</sup>, T. Pribulla<sup>1</sup> J. Grygar<sup>3</sup>

<sup>1</sup> Astronomical Institute of the Slovak Academy of Sciences 059 60 Tatranská Lomnica, The Slovak Republic

<sup>2</sup> Sterrewacht, Huygens Laboratorium, 2300 RA Leiden, The Netherlands

<sup>3</sup> Center of Particle Physics, Institute of Physics, The Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, The Czech Republic

Received: March 15, 2001

Abstract. First multicolour photoelectric light curves of the eclipsing binaries AQ Tuc and AY Vel obtained in 1965 and 1969 at the Leiden Southern Station using Walraven VBLU filters were analyzed by the Wilson-Devinney's code. Our analysis confirmed the contact configuration for AQ Tuc and revealed that AY Vel is an almost contact system with  $q \approx 3$ . The absolute radii of the components of AQ Tuc derived from the combination of our photometric and available spectroscopic elements are  $R_1 = 2.03 \pm 0.11 R_{\odot}$  and  $R_2 = 1.30 \pm 0.07 R_{\odot}$ .

Key words: eclipsing binaries - photometry - orbital elements

### 1. Introduction

In 1965-78 the second author (CJvH) initiated a program for obtaining multicolour photoelectric light curves of eclipsing variables observed in the southern hemisphere using the 0.9 m telescope of the Leiden Southern Station in South Africa. The four-band Walraven VBLU observations of the eclipsing binaries AQ Tuc and AY Vel were obtained in 1965 and 1969 as a part of the program mentioned above. They were published by van Houten et al. (2001). The aim of our paper is to analyze these multicolour light curves employing the revised version (Wilson, 1992) of Wilson-Devinney's (1971,1973) code (W&D).

# 2. Basic informations about AQ Tuc and AY Vel

#### 2.1. AQ Tucanae

The eclipsing binary AQ Tuc (HD 1372, sp. type F3/5 (Houk & Cowley, 1975);  $m_{\rm pg}^{\rm max} = 9.91 \text{ mag}; m_{\rm pg}^{\rm min \ I} \approx m_{\rm pg}^{\rm min \ II} = 10.48 \text{ mag}; P = 0.59484 \text{ days})$  was first

Contrib. Astron. Obs. Skalnaté Pleso 31, (2001), 5-12.

reported to be a variable by Strohmeier (1964). Köhler & Schöffel (1965) suggested it is an eclipsing binary, which was later confirmed by Collins (1971) who determined from his B and V light curves its orbital period quoted above. The same light curves were employed by Williamon et al. (1978) and Maceroni et al. (1981) for determining the photometric elements using Russell-Merrill and W&D methods, respectively. Although the latter authors already suggested that the binary is an A-type W UMa system, the final proof was given by Hilditch & King (1986) on the basis of their spectroscopy that provided the reliable mass ratio  $q = 0.354\pm0.012$ . Their orbital solution leads to  $V_0 = 20.6\pm1.9$  km s<sup>-1</sup>,  $K_1 = 88.5\pm2.2$  km s<sup>-1</sup> and  $a \sin i = 3.98\pm0.21$   $R_{\odot}$ . They also computed photometric elements from B and V light curves of Collins (1971), found  $i = 76.2^{\circ}$  and calculated absolute parameters of the components  $M_1 = 1.93\pm0.21$   $M_{\odot}$ ,  $M_2 = 0.69\pm0.08$   $M_{\odot}$ ,  $R_1 = 2.05\pm0.11$   $R_{\odot}$ ,  $R_2 = 1.32\pm0.07$   $R_{\odot}$ .

We derived a new ephemeris of AQ Tuc from the compilation of minima times covering the interval of 28 years. The weight 1 was assigned to photographic minima published by Köhler & Schöffel (1965). The weight 10 was given to photoelectric minima published by Collins (1971) and two minima determined from our observations using Kwee & van Woerden's (1956) method. We added the normal minimum, which we derived from spectroscopic data published by Hilditch & King (1986) and minimum derived from the HIPPARCOS (ESA, 1997) data. All minima are listed in Table 1. The least-squares solution resulted in the light elements:

The last two (O-C) deviations from the fit are very large and suggest an apparent period change on a time scale comparable to the interval of observations.

#### 2.2. AY Velorum

Eclipsing binary AY Vel (HD 70448, sp. type B9 (Popper, 1966);  $m_{pg}^{max} = 9.46$  mag;  $m_{pg}^{min I} = 9.9$  mag;  $m_{pg}^{min II} = 9.7$  mag; P = 1.6177 days) was discovered as a  $\beta$  Lyrae variable by Hertzsprung (1937). He published photographic light curves from estimates of Johannesburg and Harvard plates and found the light elements: Min I =  $26308.903 + 1.6176531 \times E$ . Eggen (1978) obtained (unpublished) photoelectric observations of the object in 1976-77 remarking: "The light elements need correction as the minima are now occurring 0.15 of the period late". We determined one minimum using our photoelectric observations of AY Vel in 1969. The minimum was shifted by +0.129 of the period as regards the ephemeris of Hertzsprung (1937), in accordance with the change of the period found by Eggen. Thus, a new quadratic ephemeris was derived using the photoelectric minimum (weight 10), determined from our observations using the Kwee & van

Woerden's (1956) method. All minima are listed in Table 2. The least-squares solution resulted in the light elements:

Table 1. Times of minimum light of AQ Tuc used for the least squares solutions

| Epoch                                                                           | HJD       | O-C     | Ref. | Epoch  | HJD        | O-C     | Ref. |
|---------------------------------------------------------------------------------|-----------|---------|------|--------|------------|---------|------|
|                                                                                 | 2400000+  |         |      |        | 2400000+   |         |      |
| 0.5                                                                             | 38257.502 | -0.0253 | 1    | 746.5  | 38701.258  | -0.0232 | 1    |
| 10.5                                                                            | 38263.49  | 0.0134  | 1    | 1279.5 | 39018.3303 | -0.0017 | 2    |
| 67.5                                                                            | 38297.364 | -0.0188 | 1    | 1288   | 39023.3827 | -0.0040 | 2    |
| 87.5                                                                            | 38309.322 | 0.0447  | 1    | 3733   | 40477.7743 | -0.0030 | 3    |
| 96                                                                              | 38314.322 | -0.0139 | 1    | 3734.5 | 40478.6667 | -0.0013 | 3    |
| 96                                                                              | 38314.367 | 0.0311  | 1    | 3738   | 40480.7482 | -0.0018 | 3    |
| 138                                                                             | 38339.293 | -0.0273 | 1    | 3743   | 40483.7227 | -0.0039 | 3    |
| 646                                                                             | 38641.497 | -0.0030 | 1    | 3746.5 | 40485.8046 | -0.0040 | 3    |
| 736.5                                                                           | 38695.294 | -0.0380 | 1    | 11800  | 45276.439  | 0.0718  | 2    |
| 736.5                                                                           | 38695.34  | 0.0080  | 1    | 17220  | 48500.3690 | -0.0451 | 4    |
| References: 1 - Köhler & Schöffel (1965), 2 - present work, 3 - Collins (1971), |           |         |      |        |            |         |      |
| 4 - ESA (1997)                                                                  |           |         |      |        |            |         |      |

 Table 2. Times of minimum light of AY Vel used for the least squares solutions. All

| minima | minima except our last one were published by Hertzsprung $(1937)$ |      |            |      |     |      |  |  |
|--------|-------------------------------------------------------------------|------|------------|------|-----|------|--|--|
|        | Ensel                                                             | IIID | L Even als | IIID | E h | IIID |  |  |

| Epoch  | HJD       | Epoch  | HJD       | Epoch   | HJD         |
|--------|-----------|--------|-----------|---------|-------------|
|        | 2400000+  |        | 2400000+  |         | 2400000+    |
| 0      | 15842.629 | 3392.5 | 21330.536 | 6468.5  | 26306.395   |
| 114.5  | 16027.866 | 3416   | 21368.523 | 6471    | 26310.368   |
| 251.5  | 16249.521 | 3493.5 | 21493.880 | 6471    | 26310.434   |
| 254    | 16253.537 | 3633   | 21719.546 | 6471    | 26310.500   |
| 269.5  | 16278.501 | 3641   | 21732.498 | 6479    | 26323.451   |
| 350    | 16408.851 | 4655   | 23372.858 | 6479    | 26323.472   |
| 471    | 16604.522 | 6113   | 25731.330 | 6524    | 26396.309   |
| 675    | 16934.557 | 6259.5 | 25968.374 | 6537    | 26417.270   |
| 675    | 16934.601 | 6262   | 25972.360 | 6537    | 26417.293   |
| 847    | 17212.792 | 6285   | 26009.555 | 6539.5  | 26421.281   |
| 876    | 17259.767 | 6296.5 | 26028.285 | 6539.5  | 26421.300   |
| 913    | 17319.590 | 6304   | 26040.311 | 6560.5  | 26455.216   |
| 1268   | 17893.862 | 6333   | 26087.272 | 6589    | 26501.188   |
| 1376   | 18068.552 | 6354   | 26121.217 | 6597.5  | 26515.219   |
| 2945.5 | 20607.563 | 6450   | 26276.502 | 7397.5  | 27809.299   |
| 3196.5 | 21013.501 | 6450   | 26276.524 | 15105.5 | 40278.35519 |
| 3284.5 | 21155.870 | 6450   | 26276.550 |         |             |

# 3. Multicolour light-curves analysis

**Table 3.** Photometric elements and their probable errors  $\sigma$  (*i* - inclination;  $q = m_2/m_1$  - mass ratio;  $\Omega$  - surface potential;  $T_1, T_2$  - polar temperatures;  $L_1, L_2$  - luminosities of the components,  $u_1, u_2$  - limb darkening coefficients, g - gravity darkening coefficient).  $\sum w(\text{O-C})^2$  is weighted sum of squares of residuals for all four light curves. Parameters not adjusted in the solution are denoted by a superscript "a".

|                        |   | AQ Tuc      |          | AY Vel      |          |
|------------------------|---|-------------|----------|-------------|----------|
| Element                |   |             | $\sigma$ |             | $\sigma$ |
| i [º]                  |   | 75.89       | 0.18     | 72.16       | 0.08     |
| q                      |   | $0.354^{a}$ | -        | $3.0^{a}$   | -        |
| Ω                      |   | 2.5028      | 0.0034   | 6.6572      | 0.0042   |
| $r_1$                  |   | 0.494       | 0.001    | 0.4740      | 0.0004   |
| $r_2$                  |   | 0.316       | 0.001    | 0.2835      | 0.0004   |
| Fill-out               |   | 0.366       | 0.015    | -0.066      | 0.007    |
| $T_1$ [K]              |   | $6900^{a}$  | -        | $10350^{a}$ | -        |
| $T_2$ [K]              |   | 7048        | 13       | 9256        | 12       |
| g                      |   | $1.00^{a}$  | -        | $1.00^{a}$  | -        |
| A                      |   | $0.50^{a}$  | -        | $1.00^{a}$  | -        |
|                        | V | $0.61^{a}$  | -        | $0.40^{a}$  | -        |
| $u_1 = u_2$            | B | $0.76^{a}$  | -        | $0.48^{a}$  | -        |
|                        | L | $0.68^{a}$  | -        | $0.52^{a}$  | -        |
|                        | U | $0.57^{a}$  | _        | $0.42^{a}$  | —        |
|                        | V | 0.6967      | 0.0006   | 0.3629      | 0.0004   |
| $L_1$                  | B | 0.6921      | 0.0007   | 0.3374      | 0.0003   |
|                        | L | 0.6891      | 0.0008   | 0.3289      | 0.0003   |
|                        | U | 0.6994      | 0.0005   | 0.3156      | 0.0002   |
| $\sum w(\text{O-C})^2$ |   | 0.017823    | —        | 0.002449    | -        |



**Figure 1.** The  $\chi^2$  dependence on the mass ratio for AY Vel



**Figure 2.** *VBLU* observations (in intensities) of AQ Tuc and their best fits. The light curves and fits are shifted by 0.2 in intensities for clarity



**Figure 3.** *VBLU* observations (in intensities) of AY Vel and their best fits. The light curves and fits are shifted by 0.2 in intensities for clarity

The photometric elements of AQ Tuc and AY Vel were determined using the W&D method and observations published by the authors (van Houten et al., 2001). At first the mode 3 for contact systems was employed. Synchronous rotation, zero eccentricity and approximate atmosphere model option were applied. Temperature of the primary components corresponding to their spectral type was accepted. For AY Vel, the hotter, but less massive component is denoted as the primary one. In order to decrease the number of free parameters, we assumed theoretically predicted values of limb darkening given by Al-Naimiy (1978), gravitational darkening and bolometric albedo given by Rucinski (1973). With these



Figure 4. The 3D surfaces of AQ Tuc (top) and AY Vel (bottom)

assumptions, all four light curves in the VBLU passbands were solved simultaneously. The differential corrections code was run until the output corrections were smaller than the probable errors  $\sigma$  of the elements. The differential corrections converged rather slowly. We had to perform more than 10 steps. While for AQ Tuc we accepted the mass ratio q=0.354 from spectroscopy, for AY Vel we have solved the VBLU light curves for several fixed values of mass ratio q in the interval 0.15 - 5.0. As shown in Fig. 1, the  $\chi^2$  reached the minimum around q=3.

The temperature of the primary component of AY Vel  $T_{eff} = 10350$  K (Popper, 1980) corresponding to its B9 spectral type indicates the presence of the radiative envelope. The accuracy of elements determination for AY Vel is adversely influenced by low inclination of the orbit, resulting in partial eclipses, while the system AQ Tuc probably exhibits short totality during the secondary minimum. The resulting photometric elements of AQ Tuc and AY Vel with their probable errors are given in Table 3. The fits corresponding to these elements are shown in Figs. 2 and 3. The discrepancy between the fit and observations of AY Vel in the U passband (phases 0.75-0.9) is most probably caused by chromospheric activity or a hot spot in the system. The 3D surfaces for AQ Tuc and AY Vel, plotted using the Binary Maker 2.0 (Bradstreet, 1993), are depicted in Fig. 4.

## 4. Conclusions

It is obvious that our multicolour photoelectric light curves for both systems presented here are superior to all previously published photometric data. The photoelectric light curves of AY Vel are unique until today. The derived photometric elements for the contact system AQ Tuc supersede the elements found in the current literature. The spectroscopic elements published by Hilditch & King (1986) combined with our photometric elements (see Table 3) lead to the absolute radii of the components of AQ Tuc:  $R_1 = 2.03\pm0.11 R_{\odot}$  and  $R_2 = 1.30\pm0.07 R_{\odot}$ . Our photometric elements of AY Vel for the optimal value of the mass ratio q = 3.0 leads to an "almost contact" configuration. Nevertheless, good spectroscopy of AY Vel is necessary to prove this conclusion.

Acknowledgements. This study was supported by VEGA grant No. 2/1157 of the Slovak Academy of Sciences. J.G. was partially supported through project No. LN00A006 of the Czech Ministry of Education granted to the Center for Particle Physics in Prague. D.C. appreciates the invitation to Leiden Observatory, where this work was initiated. We wish to thank Prof. R. E. Wilson for giving his version of W&D code to our disposal.

#### References

Al-Naimiy, H.M.: 1978, Astrophys. Space Sci. 53, 181

- Bradstreet, D.H.: 1993, *Binary Maker 2.0*, Dept. Phys. Sci., Eastern College, St. Davids, PA, U.S.A.
- Collins, T.F.: 1971, Inf. Bull. Var. Stars, 575
- Eggen, O.J.: 1978, Astron. J. 83, 288
- ESA: 1997, in: The Hipparcos Catalogue , ESA SP-1200  $\,$
- Hertzsprung, E.: 1937, Bull. Astron. Inst. Nether. 8, 157
- Hilditch, R.W., King, D.J.: 1986, Mon. Not. R. Astron. Soc. 223, 581
- Houk, N., Cowley, A.P.: 1975, Michigan Spectral Catalogue 1,
- Dept. Astron., U. Michigan, Ann Arbor, U.S.A.
- Köhler, U., Schöffel, E.: 1965, Inf. Bull. Var. Stars, 91
- Kwee, K.K., van Woerden, H.: 1956, Bull. Astron. Inst. Nether. 12, 237
- Maceroni, C., Milano, L., Russo, G., Sollazzo: 1981, Astron. Astrophys. Suppl. Ser. 45, 187

Popper, D.M.: 1966, Astron. J. 71, 175

Popper, D.M.: 1980, Ann. Rev. Astron. Astrophys. 18, 115

Rucinski, S.: 1973, Acta Astron. 23, 79

Strohmeier, W.: 1964, Inf. Bull. Var. Stars , 51

van Houten, C.J., Chochol, D., Pribulla, T., Grygar, J.: 2001, Contrib. Astron. Obs. Skalnaté Pleso **31**, 61

Williamon, R.M., Collins, T.F., Chen, K.: 1978, Astron. Astrophys. Suppl. Ser. 34, 207

Wilson, R.E.: 1992,  $private\ comm.$  ,

Wilson, R.E., Devinney, E.J.: 1971, Astrophys. J. 166, 605

Wilson, R.E., Devinney, E.J.: 1973, Astrophys. J. 182, 539