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Results of numerical solution

The stellar parameters: spectral type B0 (Harmanec 1988)
Teff = 30 000 K, M = 14.5 M⊙, R = 5.8 R⊙. The upper
graph shows the dependencies of relative radial and a-
zimuthal velocities and the relative loss of angular mo-
mentum on radius, the isothermal disk with various vis-
cosity parameter α is considered (T0 = 1

2Teff , p = 0). Ra-
dius Rcrit: vR = a (sonic point).

The lower graph shows the same dependence for fixed
viscosity parameter α = 0.1 and for different temerature
profiles.

At large radii the disk is not rotating as Keplerian one,
in supersonic region (vR > a) the rotation velocity rapidly
decreases as a consequence of adopted α viscosity pa-
rameter. It will be useful to calculate the models using
different basic expression for the viscous coupling. The
increase of parameter p (cooling) implies the increase of
critical radius and the angular momentum loss.

Numerical approach

For the numerical modelling it is necessary to solve the
system of hydrodynamic equations in cylindrical coordi-
nates (Krtička et al. 2011). Except the mass conservation
(continuity) equation (6) we have to include the equations
for stationary conservation of R and φ componenta of mo-
mentum, supplemented by appropriate boundary condi-
tions.

For further calculations the Shakura-Sunyaev α visco-
sity parameter is introduced (Shakura & Sunyaev 1973),
which expresses the quantity ṽ/a (somewhat simplified,
there are also effects of magnetic field), where a is the
sound speed (a2 = kT/µmH) and we have vR(Rcrit) = a.

The temperature distribution in the model is in radial di-
rection assumed as T = T0(Req/r)p (see e.g. equation 8),
where p is a free parameter (power law). Some of recent
models (e.g. Carcioffi et al. 2008) calculate the tempera-
ture distribution in the inner region of the disk as nearly

isothermal (T0 = 1
2Teff , p = 0). But for the calculations of

the structure of outer parts of the disk it is necessary to
consider also the power law temperature decline (p > 0).

The system of three hydrodynamic equations (continu-
ity equation, equations of for stationary conservation of
R and φ componenta of momentum) is numerically ap-
proximated by differentiation at selected radial grid with
use of Newton-Raphson method (Krtička 2003).

Irradiation of the disk by the central

star

The analytical solution of this problem and the principles
of coordinate system schematically shown in the picture
below were adopted from Smak (1989).

In case of a flat disk (the inclination of the disk’s surface
is negligible) and when R⋆/R ≪ 1, where F⋆, R⋆ are the
radiative flux and radius of the central object, the irradi-
ating flux intercepted by unit area of the disk is approxi-
mately given by

Firrad
∼=

2

3π
F⋆(R⋆/R)3. (8)

When we compare the irradiating flux with the flux D(R)
generated locally in the disk due to the viscosity, we see
that D(R) begins to dominate when Ṁ & 10−6M⊙ yr−1.
Irradiating flux therefore plays very important role in stru-
cture of steady state decretion disks in case of lower Ṁ .

Steady thin disks

With ∂/∂t = 0 from equations (3) and (4) we obtain

RΣvR = konst., 2πRΣvRR2Ω = G + C. (6)

The value of constant C we get from outer boundary con-
dition G(Rout) = 0. Assuming Keplerian rotation velo-
city, the viscous dissipation D(R) will be

D(R) =
3

8π
ṀΩ2(R)

(

√

Rout/R − 1
)

, (7)

where, since the radial velocity vR > 0, the disk mass-loss
rate Ṁ = 2πRΣvR. The rate of dissipative heating D(R)
is a physical quantity of prime observational significance.
Integrating the equation (7) we get the luminosity of the
whole disk. Thin disk approximation: plane-parallel disk
medium at each radius and also assume now the vertical
energy transport is only radiative. The temperature dis-
tribution will be much more complicated, irradiatiation
from central star must be included, etc., in first step we
use blackbody approximation and from Stefan’s law we
can analytically express the radial temperature curve.

Radial disk structure

Assuming that matter of the disk lies in cylindrical polar
coordinates very close to the plane z = 0 (Frank et al.
2002), continuity equation of the disk radial segment ∆R
in the limit ∆R → 0 is

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0, (3)

(mass conservation equation) where Σ is the integrated
surface density. For the angular momentum of radial
segment (2πR∆RΣR2Ω) we can for the limit ∆R → 0 in
quite similar way derive

R
∂

∂t

(

ΣR2Ω
)

+
∂

∂R

(

RΣvRR2Ω
)

=
1

2π

∂G

∂R
. (4)

The right hand side of this angular momentum conser-
vation equation expresses the net effect of the viscous
torque G(R, t). Equations (3) and (4) roughly determine
the disk structure in radial direction.

Viscosity

We study the transport of momentum orthogonal to the
gas motion where λ is the characteristic spatial scale of
the turbulence and ṽ is the typical velocity of the eddies in
turbulent chaotic motion. Keplerian rotation law implies
differential rotation, Ω = Ω(R).

We assume “collisionless” motion of fluid elements on dis-
tance ∼ λ, as long as λ ≪ R the processes are similar to
simple shearing in planparallel case.

Mass crosses the surface R = konst. at equal rates in
both directions, of the order Hρṽ per unit arc length
(where H is the typical scaleheight of the disc in z di-
rection). But the elements of gas crossing R = konst.,
carry slightly different amount of angular momentum.
The transport of angular momentum due to the chaotic
processes causes the viscous torque. Setting ρH = Σ
and λṽ = ν (kinematic viscosity), the torque exerted by
the outer ring on the inner ring causes viscous dissipa-
tion

D(R) =
9

8
νΣ

GM

R3
, (5)

where the Keplerian rotation velocity is assumed and the
quantity D(R) means the rate of dissipative heating per
unit surface area (flux) on one side of the disk.

Basic theoretical considerations

In contrast to the usual stellar wind mass loss we study
the role of mass loss via an equatorial outflowing viscous
decretion disk evolution in massive stars (Krtička et al.
2011). Evolutionary contraction brings massive star to
critical rotation: it leads to the formation of the disk. Fur-
ther increase in rotation rate is not allowed (Ω̇ = 0), net
loss of angular momentum is given by

L̇ = İΩcrit. (1)

where Ωcrit =
√

GM/R3
eq is the critical rotation frequency.

The viscous coupling in a decretion disk can transport
angular momentum outward to some outer disk radius
Rout. When a Keplerian disk is present, in comparison
with the case where mass decouples in a spherical shell
just at the surface of the star, the mass loss is then re-
duced by a factor

3

2

√

Rout/Req. (2)

Key point of analysis: the angular momentum loss from
the decretion disk can greatly exceed the angular momen-
tum loss from the stellar wind outflow.

Abstract: During the evolution of hot stars the equatorial rotational velocity can approach its critical value. Further increase in rotation rate
is not allowed, consequently mass and angular momentum loss is needed to keep the star near and below its critical rotation. The matter ejected
from the equatorial surface forms the outflowing viscous decretion disk. Models of outflowing disks of hot stars have not yet been elaborated in detail,
although it is clear that such disks can significantly influence the evolution of rapidly rotating stars. One of the most important features is the disk
radial temprature variation because the results will help us to specify the mass and angular momentum loss of rotating stars via decretion disks.
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