Searining for cose comparions

Mariangela Bonavita ${ }^{1}$

- R. Jayawardhana ${ }^{1}$, A. Brandeker²,
M. van Kerkwijk ${ }^{1}$ D. C̣uong Nuyen ${ }^{3}$
${ }^{1}$ Department of Astronomy and Astrophysics, University of Toronto 2.Department of Astronomy, Stockholm University.
${ }^{3}$ University of Florida

VLT/CRIRES RV survey of resolved tight
$\left(\leq 1^{\prime \prime}\right)$ binaries and triple systems in Cha I

- Follow-up of the VLT/NACO imaging survey (Lafreniere et al. 2008) that lead to the discovery of 30 binaries and 6 triples.
- Focused on the tightest binaries, where the gravitational interaction from a new found companion might be of importance

GOALS:
Search for tight binaries to refine the estimate of the multiplicity fraction

- Investigate the long-term stability of multiples at a young age

Stellar Sample

17 tight binary systems 3 triple systems, sub-arcsecond separation

Observing strategy
x Long slit mode, with the slit placed over both the components
x Telluric lines used as simultaneous wavelength reference

Spectral Extraction
At every wavelength, the peak (s) are fitted with a sum of two Moffat functions, using the values of the separation and flux ratio from the NACO data as first guesses.

Results
At every epoch each system is observed at 4 nodding positions. For each one of them the spectra of the two components are extracted and a RV shift is obtained for each one of them, using the first epoch as reference.
The final value of the RV being the average over the nodding positions.

Relative (EPO2/03 to EPO1) RV shift estimate with an error of about $100-300 \mathrm{~m} / \mathrm{s}$

Conclusions:

Using the telluric lines as reference, we reached a - precision of about $100-3.00^{\prime} \mathrm{m} / \mathrm{s}$

If confirmed, the null detection "would allow us to constraint the population of companions down to brown dwarf moses.

Further analysis is ongoing.

Poster G11

for more detail

