Eclipse Timing Variations Of Planets In P-Type Motion in Binary Star Systems
 Poster G01

R. Schwarz ${ }^{1} \star$, N. Haghighipour ${ }^{2}$, S. Egg| ${ }^{1}$, E. Pilat-Lohinger ${ }^{1}$ and B. Funk ${ }^{1}$
${ }^{1}$ Insifitute for Astronomy, University of Vienna
${ }^{2}$ Insifitute for Astronomy and NASA Astrobiology Institute, University of Hawsiii,

In general, one can distinguish three types of stable orbits for planets in binary systems:
(i) S-Type, where the planet orbits one of the two stars,
(ii) P-Type, where the planet orbits the entire binary,
(iii) T-Type, where the planet orbits close to one of the two equilibrium points L_{4} and L_{5} (Trojan planets)

Name	Mass	a [AU]	e
HU Aqr AB b	$5.9 \pm 0.6 \mathrm{M}_{\text {Jup }}$	3.6 ± 0.8	0.0
HU Aqr AB c	$4.5 \pm 0.5 \mathrm{M}_{\text {Jup }}$	5.4 ± 0.9	0.51 ± 0.15
NN Ser AB b	$6.91 \pm 0.54 \mathrm{M}_{\text {Jup }}$	5.38 ± 0.2	0.0
NN Ser AB c	$2.28 \pm 0.38 \mathrm{M}_{\text {Jup }}$	3.39 ± 0.1	0.2 ± 0.02
HW Vir AB b	$19.2 \pm 0.24 \mathrm{M}_{\text {Jup }}$	5.3 ± 0.23	0.46 ± 0.05
HW Vir AB c	$8.5 \pm 0.42 \mathrm{M}_{\text {Jup }}$	3.62 ± 0.52	0.31 ± 0.15
DP Leo AB b	$6.28 \pm 0.58 \mathrm{M}_{\text {Jup }}$	8.10 ± 0.39	0.39 ± 0.13

There are many more candidates (KEPLER CoRoT Most, .)

There are two dynamical effects which changes the ETV signal:

(a) The perturbation of the planet on the orbital motion of the binary. Former investigations showed (Schwarz et al. 2011) that the planets have to be in a circular orbit very close to the secondary star a = 0.1 AU or in case of planets with larger $\mathrm{a}>0.1 \mathrm{AU}$ they have to be more massive ($m>5 M_{J}$).
(b) The binary performes also an orbit around the common barycenter, again because of the planets perturbation. This effect leads to different light travel times.

ETV signal for a distance of the planet for $\mathrm{a}=6 \mathrm{a}_{\mathrm{b} \text { in }}$ (left graph) and for a distance of $\mathrm{a}=8 \mathrm{a}_{\mathrm{b} \text { b }}$. The calculations were done for model 3 and a planet mass of $1 \mathrm{M}_{J}$.

Amplitude (σ) of the ETV signals for planets with $10 \mathrm{M}_{\mathrm{J}}$ for different distances to the binary.

