The third body in the eclipsing binary AV CMi: Hot Jupiter or brown dwarf?

A. Liakos^{1*}, D. Mislis², P. Niarchos¹

¹Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Hellas

²Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

*Oral presenter

Aims

- Derivation of the absolute parameters of the eclipsing components
- Observations of transits for an accurate period and shape determination
- Discussion about the nature of the third component

Observations & data reduction

- Telescope: 40 cm Cassegrain
- CCD: ST-10 XME VRI photometric filters (Bessell)
- Location: University of Athens Observatory
- Method of reduction: Differential aperture photometry
- **Duration:** 2007-2011

Light curve analysis

Method: Wilson & Devinney code – PHOEBE software

3D Model & Absolute parameters

M [M _o]	1.60 (1)	1.90
R [R _☉]	1.72 (4)	2.38 (5)
T [K]	7897 (8)	7900
L [L _o]	10.3 (4)	19.8 (8)
a [R ₀]	6.2 (1)	5.2 (2)
$\log g [cm/s^2]$	4.17 (2)	3.96 (2)

Position of the components in the M-R diagram

Transit light curves

Transit analysis

- PhoS-T software
- We don't know which eclipsing component the third body transits

CASE A: The third body orbits the primary component

CASE B: The third body orbits the secondary component

Fit on transits for Case A

Fit on transits for Case B

Conclusions

> The eclipsing components are MS stars in eccentric orbits

> Updated ephemeris: $T_{transit} = HJD 2454899.354 (1) + 0.519215 (1)^d \times E$

The shape of the transits differs from time to time which affect the derived parameters of the third body

 \triangleright A mean radius value of 4.4 (3) R_{Jup} and 6.4 (6) R_{Jup} for cases A and B was calculated

> According to χ^2 value the solution of <u>case A was found more realistic</u>.

> The system's LC can be solved either with (~2%) or without a third light

➤ The "Hot Jupiter" scenario seems to fail due to the big value of the radius., therefore the "Brown dwarf" hypothesis seems that marginally satisfies the results