The third body in the eclipsing binary AV CNi: Hot Jupiter or brown dware?

A. Liakos ${ }^{1 *}$, D. Mislis ${ }^{2}$, P. Niarchos ${ }^{1}$

${ }^{1}$ Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National \& Kapodistrian University of Athens, Athens, Hellas
${ }^{2}$ Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
*Oral presenter

Aims

- Derivation of the absolute parameters of the eclipsing components
- Observations of transits for an accurate period and shape determination
- Discussion about the nature of the third component

Observations \& data reduction

- Telescope: 40 cm Cassegrain
- CCD: ST-10 XME - VRI photometric filters (Bessell)
- Location: University of Athens Observatory
- Method of reduction: Differential aperture photometry
- Duration: 2007-2011

Light curve analysis

Method: Wilson \& Devinney code - PHOEBE software

3D Model \& Absolute parameters

$\mathrm{M}\left[\mathrm{M}_{\odot}\right]$	$1.60(1)$	1.90
$\mathrm{R}\left[\mathrm{R}_{\odot}\right]$	$1.72(4)$	$2.38(5)$
$\mathrm{T}[\mathrm{K}]$	$7897(8)$	7900
$\mathrm{~L}\left[\mathrm{~L}_{\odot}\right]$	$10.3(4)$	$19.8(8)$
$\mathrm{a}\left[\mathrm{R}_{\odot}\right]$	$6.2(1)$	$5.2(2)$
$\log \mathrm{g}\left[\mathrm{cm} / \mathrm{s}^{2}\right]$	$4.17(2)$	$3.96(2)$

Position of the components in the $M-R$ diagram

Transit light curves

Transit analysis

- PhoS-T software
- We don't know which eclipsing component the third body transits

The third body orbits the primary component

The third body orbits the secondary component

Conclusions

$>$ The eclipsing components are MS stars in eccentric orbits
$>$ Updated ephemeris: $\mathrm{T}_{\text {transit }}=$ HJD $2454899.354(1)+0.519215(1)^{\mathrm{d}} \times \mathrm{E}$
$>$ The shape of the transits differs from time to time which affect the derived parameters of the third body
$>$ A mean radius value of 4.4 (3) $\mathrm{R}_{\mathrm{Jup}}$ and 6.4 (6) $\mathrm{R}_{\mathrm{Jup}}$ for cases A and B was calculated
$>$ According to χ^{2} value the solution of case A was found more realistic
$>$ The system's LC can be solved either with $(\sim 2 \%)$ or without a third light
$>$ The "Hot Jupiter" scenario seems to fail due to the big value of the radius., therefore the "Brown dwarf" hypothesis seems that marginally satisfies the results

