Light curve and orbital period analysis of the eclipsing binary AT Peg

A. Liakos^{1*}, P. Niarchos¹, E. Budding^{2,3}

- ¹Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Hellas
- ² Carter Observatory & School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand
- ³Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
- *Oral presenter

Aims

- Accurate light curves derivation
- Components' absolute parameters & evolutionary status determination
- Investigation for tertiary component
- Interpretation of the orbital period changes
- Search for pulsations

Observations & data reduction

- Telescope: 20 cm Newtonian reflector
- CCD: ST-8 XMEi B & R photometric filters (Bessell)
- Location: University of Athens Observatory
- Method of reduction: Differential aperture photometry
- Duration: Six nights on August 2010

Light curve analysis

Method: Wilson & Devinney code – PHOEBE software

LITERATURE INFORMATION

• Spectroscopic mass ratio = 0.478 (Maxted et al. 1994)

• $T_1 = 8400 \pm 100 \text{ K}, T_2 = 4900 \pm 200 \text{ K}$ (Maxted et al. 1994)

Light curve fitting

3D Model & Absolute parameters

И [M _☉]	1.0 (1)	2.2 (1)	
R [R _☉]	2.14 (3)	1.70 (3)	
[K]	5189 (7)	8400	
∠ [L _☉]	3.0 (1)	13.0 (4)	
$[R_{\odot}]$	4.61 (9)	2.18 (3)	
$\log g [cm/s^2]$	3.79 (3)	4.31 (3)	

Position of the components in the M-R diagram

Orbital period analysis

Method: Least squares with statistical weights

Conclusions

➢ Conventional Semi-detached system with the primary being a MS star and the secondary at subgiant stage

- > No pulsations were detected
- > A third light of $\sim 7\%$ was found through the light curve analysis

▷ A third body with minimal mass of ~0.6 M_{\odot} might explain the cyclic orbital period effects but cannot explain (as a MS star) the observed light contribution

The orbital period secular change is caused very probably due to more than one mechanisms since its curvature is opposite to the expected one (mass transfer)

➢ Mass loss from the system (e.g. stellar winds) or systemic angular momentum loss probably superimpose the mass transfer