Diagnostics of fragment species in the coma

Dennis Bodewits

Auburn University
Whence Comets

• Comets are primitive objects connected to the formation of our solar system.
• They provide the most primitive material available for study in our solar system
• What are **primordial properties** and how are they changed through **evolutionary processes**?
• How can we use what we see to study comets: Physics as a **means**.
• Comets move around the solar system and provide a range of changing conditions. Physics as a **goal**, comets as a **laboratory**.
The cometary spectrum

Fragment/daughter/product species are bright and easily accessible.
Resonant fluorescent emission

H_2O

CO_2

OH

CO

H

$1,000,000$ km

$100,000$ km

H_2
Resonant fluorescent emission

Composite spectrum of 103P/Hartley 2

Swift/UVOT observations of comet ISON

Depends on production rate, heliocentric distance^2, and heliocentric velocity
Narrowband filters single out molecular emission in the coma

Bodewits et al. 2016
Emissive Photodissociation (prompt)
Inner Coma

- Emissive photodissocation > fluorescence within 100 km
- Maps H$_2$O (parent) distribution
- Scales with distance to sun 2
- Independent of gas production

Bertaux 1986
Use Emissive Photodissociation to image H_2O

EPOXI images of 103P/Hartley 2

Emissive photodissociation \Rightarrow higher rotational levels

A’Hearn et al. 2015, La Forgia et al. 2017
Emissive photodissociation \rightarrow higher rotational levels
Measure composition using OI emission

Decay scheme atomic oxygen

Line ratio vs. CO$_2$/H$_2$O content

Adam McKay (2012 – ..)
Rosetta/OSIRIS narrowband filter imaging of gas and dust

Bodewits et al. 2016
Dissociative electron impact excitation

1,000,000 km

100,000 km

H₂O, OH, CO₂, CO, O
Electron impact on H₂O gas
OH: Different excitation processes lead to different spectra.
Dissociative electron impact excitation

- Stops as coma becomes collisionally thick to electrons and cools them < 10 eV
- Depends on local density and photoionization rates

\[\text{Source Emission Rate} \propto \frac{Q_{gas}^2}{d^3 r_{h}^{3/2} \sigma_{\lambda}(v_e)} \]

Mandt et al., in prep
Far-UV diagnostic of composition

Rosetta/Alice spectrum of 67P

Line ratios varies for different parent species

Feldman et al. 2016
Emission processes

• Prompt emission maps parents: map H_2O in near-UV/visible

• Electron impact allows imaging and characterizing of gas composition and local plasma conditions

• Electron impact emission is bright: observe faint activity at large distances?

• Relevant to other small body atmospheres: Europa, Callisto, Ganymede

• Missions and close apparitions allow us to investigate inner coma
 • Wirtanen later this year
Comet 46P/Wirtanen

• Occurs Dec 16, 2018
 • Less than 4 days after perihelion
 • The comet is near its brightest

• Geocentric Distance
 • 0.0775 AU
 • 30 Lunar distances
 • 11.5 million km
 • 7.1 million miles

• 10th closest comet in modern times
 • Few reached naked eye brightness

• ‘Reverse fly-by’

• Workshop about 46P to celebrate Mike A’Hearn:
 College Park, MD, August 6 – 8, 2019
Thank you!

dennis@auburn.edu