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Bojan Vrśnak e, Vasyl Yurchyshyn f

a Center for Space Plasma & Aeronomic Research, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA
b Department of Mechanical & Aerospace Engineering, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA

c Astronomical Institute, Slovak Academy of Sciences, 05960, Tatranska Lomnica, Slovakia
d W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA

e Hvar Observatory, Faculty of Geodesy, Kačičeva 26, HR-10000 Zagreb, Croatia
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Abstract

In order to understand solar eruptive events (flares and CMEs) we need to investigate the changes at the solar surface. Thus, we use a
data-driven, three-dimensional magnetohydrodynamic (MHD) model to analyze a flare and coronal mass ejection productive active
region, AR 10720 on January 15, 2005. The measured magnetic field from Big Bear Solar Observatory (BBSO) digital vector magneto-
graph (DGVM) was used to model the non-potential coronal magnetic field changes and the evolution of electric current before and after
the event occurred. The numerical results include the change of magnetic flux (U), the net electric current (IN), the length of magnetic
shear of the main neutral line (Lss), the flux normalized measure of the field twist ða ¼ lIN

U Þ with l being the magnetic permeability.
The current helicity (Hc) injected into the corona and the photospheric surface velocity are also computed. The characteristic parameters
of the buildup process before the event and the decay process after the event are investigated and the amount of magnetic energy con-
verted to drive the event is estimated.
� 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Flares and coronal mass ejections (CMEs) are spectacu-
lar phenomena which are usually associated with solar
active region. Flares are considered as a local scale phe-
nomena and CMEs have large, global scale; both phenom-
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ena expel mass, magnetic flux, and helicity through the
corona into the interplanetary medium. The amount of
mass expelled from the CME event is spectacularly large,
on the order of 1015 g. The magnetic field and plasma in
the ejected structure, combined with its momentum, can
significantly disrupt the Earth’s magnetospheric configura-
tion, thereby exposing satellites to conditions outside the
magnetosphere. Without this protective envelope the satel-
lites are subject to failure. The flare’s effect is more direct
and faster via its associated solar energetic particle (SEP)
events, which can also cause satellite failure. Thus, in order
to give the longest advance warning to protect space facil-
ities, it is imperative to enhance the current prediction
capability for solar eruptive events to the magnetic pre-
rved.
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eruption. Hence, we need to investigate magnetic changes
on the solar surface. It is generally believed that the mag-
netic energy and helicity are brought into the corona as
the emergence of the magnetic flux from the sub-photo-
sphere. The magnetic energy release in solar active phe-
nomena, such as flares and CMES, is provided by the
non-potentional components of the magnetic field in active
regions; whereby the quantification of the active region
evolution becomes the first step to understand the develop-
mental processes of the solar eruptive events such as flares
and CMEs. Following Liu and Zhang’s (2007) observa-
tional investigation of the relationship between the electric
field and flares for this region (AR 10720) at January 17,
2005, we have focused on the CME that occur on January
15, 2005. A series of magnetograms provided our model
with enough knowledge for us to model conditions for
the initiation of the CME. We employ the recently devel-
oped data-driven 3D magnetohydrodynamic (MHD)
model to analyze the January 15, 2005 NOAA/AR 10720
for the quantification of the non-potentiality parameters
to understand the physical characteristic of AR 10720.
Our focus was on the conditions of pre- and post-CME.

The non-potentiality parameters investigated include the
magnetic shear, total magnetic flux, net current, and the
field twist as introduced by Falconer et al. (2002). Other
important physical quantities such as the current helicity
and transverse velocity resulting from the photospheric
dynamo were examined. Similar types of investigations
have been performed by many investigators (Chae, 2001;
Chae et al., 2004; Deng et al., 2001; Demoulin et al.,
2002; Kusano et al., 2002; Moon et al., 2002; Nindos
et al., 2003; Nindos and Andrews, 2004; Liu and Zhang,
2006, 2007). Most notably, Liu and Zhang (2007) investi-
gated the relationship between inductive electric field and
flares based on AR 10720, 10486, 9077 and 8100. Demoulin
et al. (2002), Kusano et al. (2002), Moon et al. (2002) and
Nindos et al. (2003) have performed a study of the mag-
netic helicity budget of solar active region and coronal
Fig. 1. Observed coronal mass ejection of January 15, 2005 by LASCO/C2 at 2
red crosses and blue lines are traces of the streamer feature; it is not related
mentioned in this figure legend the reader is referred to the web version of th
mass ejections using either potential field model or linear
force-free field model. But, all these studies did not use a
self-consistent magnetohydrodynamic model. It is critical
to account for the interactions between the plasma motion
and magnetic field to determine the physical properties to
understand the eruption physics.

A brief description of the observation during the period
of the CME is given in Section 2, and the three-dimensional
compressible magnetohydrodynamic and the boundary
conditions are given in Section 3. In Section 4, the numer-
ical results are presented. Finally, the summary of this
investigation is given in Section 5.

2. A brief description of the observed AR 10720 during the

CME period

Active region NOAA AR 10720 first appeared near the
east limb on January 10, 2005, but it was not until January
15 that this region produced several flares. GOES reported
an X2.6 X-ray flare between 22:25 and 23:31 UT with peak
emission at 23:02 UT. At 23:06 UT a halo coronal mass
ejection was seen by LASCO/C2, shown in Fig. 1a, which
showed the very bright loop front, mainly in the north-west
(NW) quadrant. The event was seen in LASCO/C3 at
00:18 UT of January 16, 2005 as shown in Fig. 1b.
Fig. 2a and b showed the MDI magnetogram (17:45 UT)
and BBSO H-alpha (22:31 UT) at 15 January 2005. Since
the MDI magnetogram only has line-of-sight (LOS) mag-
netic field measurements, our model needed BBSO’s digital
vector magnetogram (DVMG) for the study. The data we
used has a cadence of �2 min.

3. The model

The employed model is the recently developed data-dri-
ven 3D MHD model (Wu et al., 2005, 2006). This model is
based on the conservation laws with higher order transport
effects (i.e. magnetic diffusion, thermal conduction, viscos-
3:05UT (left) and January 16, 2005 by LASCO/C3 at 00:18UT (right). The
to the halo CME which we have studied. (For interpretation of color

e article.)



Fig. 2. Observed AR 10720 of January 15, 2005 at 17:45:00 UT from MDI (left) and BBSO H-alpha sub-field at 22:31:48 UT (right).
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ity, etc.) and includes the additional forces induced by dif-
ferential rotation and meridional flow. In addition, the
induction equation is included to account for the dynamics
effects caused by the interaction between the plasma flow
and the magnetic field. These equations are given by Wu
et al. (2006); we will not repeat them here. An illustration
of the concept of this data driven three-dimensional com-
pressible and resistive MHD model is depicted in Fig. 3.
The computational domain is a 3D rectangular box in
Cartesian coordinates with 256 � 256 � 101 grids in the
x, y and z directions, respectively in accordance with
NOAA AR 10720 BBSO’s digital vector magnetogram
(DVMG) which corresponds to a spatial extend of
222 � 222 � 87 Mm. The ambiguity of the transverse mag-
netic field has been corrected and the magnetic vector and
geometric mapping of the observation in the image plane
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have transformed into heliograph plane (Gary and Hag-
yard, 1990). The lower physical boundary conditions are
derived from the method of characteristics (Nakagawa,
1981a,b; Wu and Wang, 1987). From the characteristics
theory, if the eigenvalue (i.e. characteristic wave speed) is
negative, that means the boundary condition will be
affected by the computational domain, and we have to
use the compatibility equation to determine the physical
parameters. The number of compatibility equations that
have to be used is determined by the number of negative
eigenvalues. In this study, we have juzj < V s; V A;V f , there-
fore uz; uz � V s; uz � V A, and uz � V f are negative at the
photosphere. Furthermore note that uz is a set of two
degenerated eigenvalues of the normal characteristic equa-
tions. Hence, these five parameters determined by five com-
patibility equations, and the three remaining physical
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Fig. 4. The simulated non-potential parameters (i.e. Lss, length of
magnetic shear of the main neutral line (in units of 2 � 104 km); magnetic
flux (U) (in units of 5 � 1021 Mx); net electric current (IN) (in units of
3 � 1011 A); and normalized measure of the field twist (a) (in units of
1.5 � 10�5 km)) at various times for AR 10720, on January 15, 2005. The
horizontal bold line indicates the impulsive phase of a flare (onset-to-
maximum of the soft X-ray emission), the vertical solid line shows the
occurrence of a CME in the LASCO/C2 field of view, and the vertical
dashed line indicates the back extrapolated time of the CME launch.
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parameters are to be given explicitly. In this study, the
three given parameters that drive the model are the three
components of the magnetic field, given by disjunct time
series of photospheric vector magnetogram. uz � V f ;
uz � V s; uz � V A; uzjuzj � V A; V s; V f The detailed derived
expressions which describe these time-varying physical
parameters, p, q, ~B, and ~u (the pressure, density, magnetic
field, and velocity field, respectively) on the lower bound-
ary obtained from the method of characteristics are given
in the appendix of Wu et al. (2006). The boundary condi-
tions used for the four sides and top boundary are non-
reflective boundary. There are two steps to implement these
calculations: (i) use the observed line-of-sight magnetic
field component of AR 10720 from BBSO’s DVMG (Spi-
rock et al., 2001) to construct a three-dimensional potential
field model in the computation volume, as the initial trial
condition. At the lower boundary the measured three com-
ponents of magnetic field are given without change during
the course of this simulation. (ii) Since there are no density
measurements available from the photosphere we simply
assume that the ‘‘initial” trail density distribution at the
photospheric level is directly proportional to the value of
the magnitude of the transverse field and then decreases
exponentially with the scale height. These trial conditions
are to initiate the numerical computation. Then, the
plasma and field will evolve to a new magnetohydrody-
namic equilibrium state which should be able to represent
the solar atmosphere conditions at a specific time. When
we input another set of observed data following the same
procedure, we will obtain another magnetohydrodynamic
state at another time. Thus, within the computational
domain, the continuous time evolution of the solar atmo-
sphere 8 physical parameters are obtained. These results
are presented in the next section.

4. Results

By inputs of the measured three components of mag-
netic field of AR 10720 together with assumed density dis-
tribution as pointed out in the previous section, we
obtained the four major non-potentiality parameters, fol-
lowing Falconer et al. (2002), shown in Fig. 4 during the
period of 22:10–23:50 UT, January 15, 2005. These non-
potentiality parameters are (i) the length of strong mag-
netic shear (>45�) and the strong transverse field (>300
gauss) of the main neutral line, (ii) the total magnetic flux
content (U), (iii) the net electric current (IN), and (iv) the
flux normalized of the field twist ða ¼ lIN

U Þ. The horizontal
bold line indicates the impulsive phase of a flare (which is
not discussed here). The solid vertical line indicates the
CME appearance in the LASCO/C2 field of view and the
vertical dashed line indicates the back extrapolated time
of the CME launch. One of the general characteristics we
have recognized is that before the CME, all these four
parameters are increased in the build-up phase and they
decline after the CME as expected. It is worth noting that
Schrijver et al. (2005) have suggested that the currents asso-
ciated with coronal non-potentiality have a characteristic
growth and decay time scale of �10 to 30 h. In our calcu-
lation we only simulate the rise and decay phases of non-
potentiality around the CME. Now, we will examine the
surface features. Fig. 5 shows the evolution of magnetic
shear (LSS) from 22:33–23:15 UT, and we again observe
the increase of the magnetic shear before the CME, and
then the decrease after the CME. It is worth noting that
the fragmentation of magnetic shear at the north-west
quadrant does not appear at the north-east quadrant. This
feature indicates the increase of a magnetic shear is rather
homogeneous at the north-east quadrant. On the other
hand, the fragmentation at the north-west quadrant repre-
sents the severe inhomogenity where it could be the source
of the instability to trigger a CME. This can be understood
from the MHD instability theory in which the highly non-
uniform twist will induce the kink instability (Lapenta
et al., 2006, Biskamp, 1993). However, we have not exam-
ined this topic in detail here. It is our intent to investigate it
later. At time of 23:15 UT, the magnetic shear at the north-
west quadrant has almost disappeared and the CME has
already launched. By looking at the north-east quadrant,
the magnetic shear has shown little change which is why
we suggest that, even though there is a strong shear with
homogenous strength, it could be stable for a long time
without eruption. Thus, strong magnetic shear is a neces-
sary condition, but not sufficient to produce eruption. In
the next few figures we show some other physical properties
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Fig. 5. The simulated evolution of the length of magnetic shear of the main neutral line (Lss) of AR 10720 during the period 22:33�23:15 UT on January
15, 2005. The contours of the line-of-sight magnetic field (Bz) with the solid lines and broken lines representing the positive and negative polarity,
respectively. The color scale indicates the strength of the line-of-sight magnetic field ð�2400 G 6 Bz 6 1700 GÞ contours in which the bright color
represents the positive field, and the dark color represents the negative field. (For interpretation of color mentioned in this figure legend the reader is
referred to the web version of the article.)
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Fig. 6. The simulated partial (left) and total (right) current helicity, respectively. The magnitude is indicated by the code bar on the right which is in the
range of �15.7 to +11.2 (10�3 G2/m).
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during that same period of time (22:33–23:15 UT); Fig. 6
shows the variations of the partial (right) and total (left)
current helicity before (22:33 UT) and after (23:15 UT) of
a CME. The total current helicity is given by:
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H c ¼ ~B �~J ¼ ~B � ðr �~BÞ
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Usually, only the partial current helicity (i.e. third term)
can be obtained from a vector magnetogram, but with the
aid of the MHD model we are able to compute all three
terms, thus, we define it as the ‘‘total current helicity”.
As we can see from Eq. (1), the total current helicity
includes the effects of the vertical gradient magnetic field.
For both cases, it indicates that the current helicity is
decreased after the CME which is consistent with those
non-potentiality parameters shown in Fig. 4. It is also
worth noting that differences in strength between the par-
tial and total current helicity is about a factor of two and
the distribution of the total current helicity is much more
January 15,
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Fig. 7. The simulated vertical and transverse current for AR 10720 from 22:3
represents the intensity of the upward and downward vertical current and the
cohesive than the partial one. The amount of energy result-
ing from the dissipated current at the surface correspond-
ing with the current helicity is 3 � 1032 erg which is
adequate to propel a CME. It is also worth noting that
the total current helicity changes are related to the local
twist of the magnetic field in the photosphere, thus the
increase and decrease of total current helicity corresponds
to the increase and decrease of the magnetic shear as shown
in Figs. 4 and 5. Another feature worth noting is that var-
iation of current (IN) and twist (a) are well matched spa-
tially, which says that the net electric current is caused by
the twist of the field line as shown in Fig. 4.

In order to reveal the current system of AR 10720, we
have plotted the evolution of vertical and transverse cur-
rent at the surface in Fig. 7 before and after the occurrence
of a CME. The bright and dark regions represents the
upward and downward current density where the magni-
tude is given by the color bar in the range between �2.0
and 2.4 kG/Mm., the arrows represent the transverse cur-
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arrows represents the transverse current.
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Fig. 8. The simulated transverse velocity (�2.2 km s�1
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6 Vy 6 3.8 km s�1) evolution of AR 10720 during the period
22:33–23:35 UT of January 15, 2005.
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rent density where the magnitude of the current density is
in the range of �0.2 to 0.76 kG/Mm. By examining these
two panels further, the changes before and after the
appearance of a CME are clearly indicated. For instance,
the significant decreasing of transverse current density after
the CME was launched at the lower part of the panel and
the vertical current density changes as shown at the loca-
tion of �182 � 135 and then completely disappears after
the CME. These are all qualitative descriptions, making
it difficult to arrive at a quantitative conclusion, because
it is not possible to identify the exact location of the
CME at the solar surface.

In Fig. 8, we show the evolution of the transverse veloc-
ity on the photosphere. Interestingly, the evolution of the
transverse velocity on the photosphere can cause the varia-
tion of electric field (i.e. ~E � ~V �~B), consequently this cor-
responds to the transverse currents shown in Fig. 7.
5. Concluding remarks

In this paper, we have used a three-dimensional, time-
dependent, compressible magnetohydrodynamic (MHD)
model together with photospheric vector magnetic field
measurements to investigate the transport and change of
the current helicity and magnetic non-potentiality proper-
ties of AR 10720 before and after a CME. Usually, the cur-
rent helicity is deduced from measurements that are limited
to one term (i.e. the third term of Eq. (1)) on the basis of
the line-of-sight (LOS) component of the magnetic field
and horizontal gradient of the transverse field. However,
the total current helicity can be obtained self-consistently
with the aid of an MHD model with dynamical effects
(i.e. the interaction between magnetic field and plasma)
(see Eq. (1)).

Specifically, our results also include the photospheric
surface current system as shown in Fig. 7. To understand
the physics of this surface current in relation to coronal
current, we devise this current system into three parts; inte-
rior current, Ii which occurs in the interior of the Sun, a
subphotosphere quantity, coronal current, Ic being rEz

and the surface (transverse) current Is, where I s ¼
ðI2

x þ I2
yÞ

1=2 ¼ rðE2
x þ E2

yÞ
1=2, r being the classical electric

conductivity and Ex, Ey and Ez are the outputs of the
model. Further, we define the same current component in
the phase of the eruption as I�c ; I�s ; and I�i : Here I�c and I�i
will not be able to be estimated due to insufficient conditions,
but I�s can be estimated from our calculation shown in Fig. 7
such that I�s ¼ Is þ dIs, where dIs is the induced surface cur-
rent caused by the interaction between the plasma motion
and magnetic field. If it is assumed that Ii remains constant
since it is part of the global subsurface current system,
whereas the coronal current contained in the erupting struc-
ture decreases due to inductive effects, then current conserva-
tion implies that I�s increases before eruption and decreases
after eruption. Fig. 7 clearly shows the change of this induced
surface current dIs. Based on the present calculation, the dIs

has a value of 1.5 � 1011 A, which corresponds to 3 � 1032
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erg which is enough energy to propel this CME. This param-
eter could be another important non-potentiality property
for forecasting purposes.

In summary, this combined modeling and data analyses
study of AR 10720 has revealed some important knowledge
for the understanding of active region evolution. The mag-
netic non-potentiality parameters and current helicity are
closely related to the photospheric surface dynamo. The mod-
eling has given us the ability to quantify these magnetic non-
potential parameters. It is worth conducting more studies of
this type to establish a statistical meaning of these physical
parameters for potential forecasting of solar eruptive events.
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